我的做法就是暴力,再加点剪枝来不超时。具体的思路是先从整体去识别这个字符串是否为回文串,如果不是再用连续的n-1个字符进行判断是否为回文,一旦是就不用继续判断其他的了,已经是最长的回文了,所以可以减少很多判断,效率比较高。
public String judge(String str) { int commonLength; String result = str.substring(0, 1); if (str.length() % 2 == 0) { commonLength = 0; int index = str.length() / 2; int left = index - 1; int right = index; while (true) { if (left < 0 || right >= str.length()) { break; } if (str.charAt(left) == str.charAt(right)) { commonLength += 2; result = str.substring(left, right + 1); left--; right += 1; } else { break; } } } else { commonLength = 1; int index = str.length() / 2; int left = index - 1; int right = index + 1; while (true) { if (left < 0 || right >= str.length()) { break; } if (str.charAt(left) == str.charAt(right)) { result = str.substring(left, right + 1); commonLength += 2; left--; right += 1; } else { break; } } } return result; } public String longestPalindrome(String s) { String commonStr = s.substring(0, 1); int commonLength = s.length(); int resultLength = 1; while (true) { for (int i = 0; i < s.length(); i++) { if (commonLength + i <= s.length()) { String result = judge(s.substring(i, i + commonLength)); if (result.length() > commonStr.length()) { commonStr = result; resultLength = commonStr.length(); } } else { break; } } commonLength--; if (commonLength <= resultLength) break; } return commonStr; }
中心扩散法
思路大同小异,这个是从小扩大,我的是从大扩小,我的要高效些。
public String longestPalindrome1(String s) { if (s == null || s.length() == 0) { return ""; } int strLen = s.length(); int left = 0; int right = 0; int len = 1; int maxStart = 0; int maxLen = 0; for (int i = 0; i < strLen; i++) { left = i - 1; right = i + 1; while (left >= 0 && s.charAt(left) == s.charAt(i)) { len++; left--; } while (right < strLen && s.charAt(right) == s.charAt(i)) { len++; right++; } while (left >= 0 && right < strLen && s.charAt(right) == s.charAt(left)) { len = len + 2; left--; right++; } if (len > maxLen) { maxLen = len; maxStart = left; } len = 1; } return s.substring(maxStart + 1, maxStart + maxLen + 1); } 作者:reedfan 链接:https://leetcode-cn.com/problems/longest-palindromic-substring/solution/zhong-xin-kuo-san-fa-he-dong-tai-gui-hua-by-reedfa/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
动态规划。
记录已经计算过的区间的是否为回文。
public String longestPalindrome(String s) { if (s == null || s.length() < 2) { return s; } int strLen = s.length(); int maxStart = 0; //最长回文串的起点 int maxEnd = 0; //最长回文串的终点 int maxLen = 1; //最长回文串的长度 boolean[][] dp = new boolean[strLen][strLen]; for (int r = 1; r < strLen; r++) { for (int l = 0; l < r; l++) { if (s.charAt(l) == s.charAt(r) && (r - l <= 2 || dp[l + 1][r - 1])) { dp[l][r] = true; if (r - l + 1 > maxLen) { maxLen = r - l + 1; maxStart = l; maxEnd = r; } } } } return s.substring(maxStart, maxEnd + 1); } 作者:reedfan 链接:https://leetcode-cn.com/problems/longest-palindromic-substring/solution/zhong-xin-kuo-san-fa-he-dong-tai-gui-hua-by-reedfa/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。