[计算几何]Wall[POJ1113]/[UVA1303]

欢迎大家访问我的老师的OJ———caioj.cn

题面描述

POJ
UVA

思路

简要题意大概就是:

给定n,l, 然后给定平面中n个点的横纵坐标,
求一个最小周长的封闭图形(可以包含曲线),
要求该图形包裹住所有点,
并且该封闭图形上的任何点距离任意给定点不小于l
输出这个最小周长

就以样例为例吧:
[计算几何]Wall[POJ1113]/[UVA1303]

很明显,这个封闭图形的最小周长就为凸包周长加2πl2\pi l2πl。

AC code

此为Uva的提交

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define pi acos(-1.0)
using namespace std;
const int N=5e4+10;
struct node{double x,y;}p[N],h[N];
double mul(node p1,node p2,node p0)
{
    double x1=p1.x-p0.x,y1=p1.y-p0.y;
    double x2=p2.x-p0.x,y2=p2.y-p0.y;
    return x1*y2-x2*y1; 
}
bool cmp(node a,node b){return a.x==b.x?a.y<b.y:a.x<b.x;}
double dis(node a,node b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
int sta[N],tp,n;
bool used[N];
void tb()
{
    sort(p+1,p+n+1,cmp);
    tp=0;
    sta[++tp]=1;
    for(int i=2;i<=n;i++)//下凸壳 
    {
        while(tp>1&&mul(p[sta[tp]],p[i],p[sta[tp-1]])<=0)used[sta[tp--]]=0;
        used[i]=1;
        sta[++tp]=i;
    }
    int top=tp;
    for(int i=n-1;i;i--)//上凸壳 
        if(!used[i])
        {
            while(tp>top&&mul(p[sta[tp]],p[i],p[sta[tp-1]])<=0)used[sta[tp--]]=0;
            sta[++tp]=i;
        }
    for(int i=1;i<=tp;i++)h[i]=p[sta[i]];
}
double calc()
{
    double ans=0;
    for(int i=2;i<=tp;i++)
		ans+=dis(h[i-1],h[i]);
    return ans;
}
int main()
{
	int L;
	int t;scanf("%d",&t);
    while(t--)
    {
    	scanf("%d%d",&n,&L);
    	for(int i=1;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
   		tb();
  	  	double ans=calc()+2*pi*L;
  	  	printf("%d\n",(int)(ans+0.5));
		if(t)puts("");
  	}
   	return 0;
}
上一篇:懂了!VMware/KVM/Docker原来是这么回事儿


下一篇:CentOS 安装hping3工具及安装遇到的错误及解决方法