from openvino.inference_engine import IECore import time import cv2 as cv def ssd_video_demo(): ie = IECore() for device in ie.available_devices: print(device) model_xml = "/home/bhc/BHC/model/intel/pedestrian-and-vehicle-detector-adas-0001/FP16/pedestrian-and-vehicle-detector-adas-0001.xml" model_bin = "/home/bhc/BHC/model/intel/pedestrian-and-vehicle-detector-adas-0001/FP16/pedestrian-and-vehicle-detector-adas-0001.bin" net = ie.read_network(model=model_xml, weights=model_bin) input_blob = next(iter(net.input_info)) out_blob = next(iter(net.outputs)) n, c, h, w = net.input_info[input_blob].input_data.shape print(n, c, h, w) cap = cv.VideoCapture("1.mp4") exec_net = ie.load_network(network=net, device_name="CPU") while True: ret, frame = cap.read() if ret is not True: break image = cv.resize(frame, (w, h)) image = image.transpose(2, 0, 1) inf_start = time.time() res = exec_net.infer(inputs={input_blob:[image]}) inf_end = time.time() - inf_start print("infer time(ms):%.3f"%(inf_end*1000)) ih, iw, ic = frame.shape res = res[out_blob] #输出结果(1, 1, N, 7,) for obj in res[0][0]: # [image_id, label, conf, x_min, y_min, x_max, y_max] if obj[2] > 0.5: xmin = int(obj[3] * iw) ymin = int(obj[4] * ih) xmax = int(obj[5] * iw) ymax = int(obj[6] * ih) cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8) cv.putText(frame, "infer time(ms): %.3f, FPS: %.2f"%(inf_end*1000, 1/inf_end), (10, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255), 2, 8) cv.imshow("Pedestrian Detection", frame) c = cv.waitKey(1) if c == 27: break cv.waitKey(0) cv.destroyAllWindows() if __name__ == "__main__": ssd_video_demo()