题目如下:
We are given
hours
, a list of the number of hours worked per day for a given employee.A day is considered to be a tiring day if and only if the number of hours worked is (strictly) greater than
8
.A well-performing interval is an interval of days for which the number of tiring days is strictly larger than the number of non-tiring days.
Return the length of the longest well-performing interval.
Example 1:
Input: hours = [9,9,6,0,6,6,9] Output: 3 Explanation: The longest well-performing interval is [9,9,6].
Constraints:
1 <= hours.length <= 10000
0 <= hours[i] <= 16
解题思路:假设i~j (j不是hours中最后一个元素) 区间是最长符合条件的时间段,那么必定在这个区间内大于8的元素的总数减去小于8的元素的总数的值为1。这里可以通过反证法,如果差值大于1,那么无论第j+1的元素大于还是小于8,i~j+1区间内大于8的元素总数必定是大于小于8的元素的总数的。知道了这个规律就很好办了,遍历hours数组,记录从0开始的0~i区间内大于8的元素的总数与小于8的元素的总数的差值,并记为val[i],如果j元素是最长区间内最后一个元素,那么只要找到第一个i满足 val[j] - val[i] = 1即可,再判断一下val[j]是否大于0,如果大于0则表示考虑到最长区间是0~j。最后一步再针对最后一个元素单独计算依次即可。
代码如下:
class Solution(object): def longestWPI(self, hours): """ :type hours: List[int] :rtype: int """ dic = {} count = 0 res = 0 for i in range(len(hours)-1): count = count + 1 if hours[i] > 8 else count - 1 if count not in dic: dic[count] = i if count - 1 in dic: res = max(res,i - dic[count - 1]) if count == 1: res = max(res,i + 1) # the last count = 0 for i in range(len(hours) - 1,-1,-1): count = count + 1 if hours[i] > 8 else count - 1 if count > 0: res = max(res, len(hours) - i) return res