Description
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。
Input
Output
输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果。
Sample Input
1 4 5
2 4 5
Sample Output
5
//【样例说明】满足条件的2个序列为[4]和[5]。
题解
记得做过这样一道题:[Luogu 3902]Increasing
里面的思想就是将严格递增的序列第$i$个数减去$i$变成单调不下降的序列,来方便处理答案。
这里我们用相同的思想。由于原序列单调不下降,我们可以让第$i$个数加上一个$i$,使原序列单调递增。
这样取值范围就变成了$[L+1, R+n]$,一共$n+R-L$个数,这样对于长度为$n$的序列我们只要求$C^n _{n+R-L}$ = $C^{R-L} _{n+R-L}$。
然而到这里还没结束,题目要求的是长度为$[1, n]$。
简而言之就是求:
$$\sum _{i=1} ^n {C^{R-L} _{i+R-L}}$$
我们这里要想到这样一个公式:$C^m _n = C^{m-1} _{n-1}+C^m _{n-1}$,
我们再看上面这个式子,令$k = R-L$:
$ans=C_{1+k}^k+C_{2+k}^k+C_{3+k}^k+…+C_{n+k}^k$
$=C_{1+k}^{1+k}-1+C_{1+k}^k+C_{2+k}^k+C_{3+k}^k+…+C_{n+k}^k$
$=(C_{1+k}^{1+k}+C_{1+k}^k)+C_{2+k}^k+C_{3+k}^k+…+C_{n+k}^k-1$
$=(C_{2+k}^{1+k}+C_{2+k}^k)+C_{3+k}^k+…+C_{n+k}^k-1$
$=(C_{3+k}^{1+k}+C_{3+k}^k)+…+C_{n+k}^k-1$
$……$
$=C_{n+k+1}^{k+1}-1$。
求$C_{n+k+1}^{k+1}$用$Lucas$求就可以了。
//It is made by Awson on 2017.10.7
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = 1e6+; int n, l, r;
int A[N+], B[N+]; int C(int n, int m) {
if (m > n) return ;
return (LL)A[n]*B[n-m]%N*B[m]%N;
}
int Lucas(int n, int m) {
if (!m) return ;
return (LL)C(n%N, m%N)*Lucas(n/N, m/N)%N;
}
void work() {
scanf("%d%d%d", &n, &l, &r);
printf("%d\n", (Lucas(n+r-l+, r-l+)-+N)%N);
}
int main() {
A[] = B[] = A[] = B[] = ;
for (int i = ; i <= N; i++)
B[i] = -(LL)(N/i)*B[N%i]%N;
for (int i = ; i <= N; i++)
A[i] = (LL)A[i-]*i%N,
B[i] = (LL)B[i-]*B[i]%N;
int t;
scanf("%d", &t);
while (t--)
work();
return ;
}