对于连通性,本质上DFS和BFS实际上都可以解决连通块模型
也就是:
- Flood FIll模型
- 图和树的遍历
对于连通块模型,BFS除了可以解决是否连通的问题,也可以解决两个点之间最短距离是多少,但是DFS就只能判断两个点是否连通的问题
那这样的话,DFS有什么好处呢?
- 代码短
- 直接用系统栈,不需要手写栈
缺点:
当搜索层数很多可能会爆栈
解决迷宫问题
步骤:
- 从这个点往四个方向出发
- 判断下一个要到的点的合法性,如果可以就继续递归;如果不行就返回上一层继续搜索
AcWing 1112. 迷宫
// Problem: 迷宫
// Contest: AcWing
// URL: https://www.acwing.com/problem/content/1114/
// Memory Limit: 64 MB
// Time Limit: 1000 ms
// Code by: ING__
//
// Powered by CP Editor (https://cpeditor.org)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <map>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#define ll long long
#define re return
#define Endl "\n"
#define endl "\n"
using namespace std;
typedef pair<int, int> PII;
int dx[4] = {-1,0,1,0};
int dy[4] = {0,1,0,-1};
int T;
int n;
char mapp[110][110];
bool vis[110][110];
void dfs(int x, int y){
if(x < 0 || x >= n || y < 0 || y >= n || mapp[x][y] == '#' || vis[x][y]) return;
vis[x][y] = 1;
for(int i = 0; i < 4; i++){
dfs(x + dx[i], y + dy[i]);
}
}
int main(){
cin >> T;
while(T--){
cin >> n;
for(int i = 0; i < n; i++){
scanf("%s", mapp[i]);
}
int ha, la, hb, lb;
cin >> ha >> la >> hb >> lb;
memset(vis, 0, sizeof(vis));
dfs(ha, la);
if(vis[hb][lb]){
cout << "YES" << Endl;
}
else cout << "NO" << endl;
}
re 0;
}
AcWing 1113. 红与黑
// Problem: 红与黑
// Contest: AcWing
// URL: https://www.acwing.com/problem/content/1115/
// Memory Limit: 64 MB
// Time Limit: 1000 ms
// Code by: ING__
//
// Powered by CP Editor (https://cpeditor.org)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <map>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#define ll long long
#define re return
#define Endl "\n"
#define endl "\n"
using namespace std;
typedef pair<int, int> PII;
int dx[4] = {-1,0,1,0};
int dy[4] = {0,1,0,-1};
int n, m;
char mapp[25][25];
bool vis[25][25];
int dfs(int x, int y){
if(x < 0 || x >= n || y < 0 || y >= m || mapp[x][y] == '#' || vis[x][y]) return 0;
int res = 1;
vis[x][y] = 1;
for(int i = 0; i < 4; i++){
res += dfs(x + dx[i], y + dy[i]);
}
return res;
}
int main(){
while(cin >> m >> n, m || n){
for(int i = 0; i < n; i++){
scanf("%s", mapp[i]);
}
memset(vis, 0, sizeof(vis));
int x, y;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
if(mapp[i][j] == '@'){
x = i;
y = j;
break;
}
}
}
cout << dfs(x, y) << endl;
}
}