PAT (Advanced Level) Practice 1138 Postorder Traversal (25 分) 凌宸1642
题目描述:
Suppose that all the keys in a binary tree are distinct positive integers. Given the preorder and inorder traversal sequences, you are supposed to output the first number of the postorder traversal sequence of the corresponding binary tree.
译:假设二叉树中的所有键都是不同的正整数。 给定前序和中序遍历序列,您应该输出相应二叉树的后序遍历序列的第一个数字。
Input Specification (输入说明):
Each input file contains one test case. For each case, the first line gives a positive integer N (≤ 50,000), the total number of nodes in the binary tree. The second line gives the preorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
译:每个输入文件包含一个测试用例。 对于每种情况,第一行给出一个正整数 N(≤ 50,000),即二叉树中节点的总数。 第二行给出前序序列,第三行给出中序序列。 一行中的所有数字都用空格分隔。
output Specification (输出说明):
For each test case, print in one line the first number of the postorder traversal sequence of the corresponding binary tree.
译:对于每个测试用例,在一行中打印相应二叉树的后序遍历序列的第一个数字。
Sample Input (样例输入):
7
1 2 3 4 5 6 7
2 3 1 5 4 7 6
Sample Output (样例输出):
3
The Idea:
- 中序 + 先序 重建二叉树。
- 然后 DFS 进行后序遍历。
The Codes:
#include<bits/stdc++.h>
using namespace std ;
const int maxn = 50005 ;
struct node{
int val ;
node* lchild ;
node* rchild ;
};
int pre[maxn] , in[maxn] , post[maxn] , n , ans , k = 0;
node* create(int preL , int preR , int inL , int inR){
if(preL > preR) return NULL ;
node* root = new node() ;
root->val = pre[preL] ;
int k = inL ;
for( ; k <= inR ; k ++){
if(in[k] == pre[preL])
break ;
}
int numLeft = k - inL ;
root->lchild = create(preL + 1 , preL + numLeft , inL , k - 1) ;
root->rchild = create(preL + numLeft + 1 , preR , k + 1 , inR) ;
return root ;
}
void postOrder(node* root){
if(!root) return ;
postOrder(root->lchild) ;
postOrder(root->rchild) ;
post[k++] = root->val ;
}
int main(){
cin >> n ;
for(int i = 0 ; i < n ; i ++) scanf("%d" , pre[i]) ; // 用 cin 的话, 最后一个测试点会超时
for(int i = 0 ; i < n ; i ++) scanf("%d" , in[i]) ;
node* root = create(0 , n - 1 , 0 , n - 1) ;
postOrder(root) ;
cout << post[0] << endl ;
return 0 ;
}