1. 综述
1.1 Cover和Hart在1968年提出了最初的邻近算法
1.2 分类(classification)算法
1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)
3. 算法详述
3.1 步骤:
为了判断未知实例的类别,以所有已知类别的实例作为参照
选择参数K
计算未知实例与所有已知实例的距离
选择最近K个已知实例
根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别
3.2 细节:
关于K
关于距离的衡量方法:
3.2.1 Euclidean Distance 定义
4. 算法优缺点:
4.1 算法优点
简单
易于理解
容易实现
通过对K的选择可具备丢噪音数据的健壮性