机器学习(4): KNN 算法

1. 综述
     1.1 Cover和Hart在1968年提出了最初的邻近算法
     1.2 分类(classification)算法
     1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)
 
机器学习(4): KNN 算法
 
3. 算法详述
 
     3.1 步骤:
     为了判断未知实例的类别,以所有已知类别的实例作为参照
     选择参数K
     计算未知实例与所有已知实例的距离
     选择最近K个已知实例
     根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别
 
     3.2 细节:
     关于K
     关于距离的衡量方法:
         3.2.1 Euclidean Distance 定义
 
               机器学习(4): KNN 算法
 
4. 算法优缺点:
     4.1 算法优点
          简单
          易于理解
          容易实现
          通过对K的选择可具备丢噪音数据的健壮性
          
机器学习(4): KNN 算法
 
 
上一篇:u-boot启动流程分析(2)_板级(board)部分


下一篇:一道看似简单的sql需求却难倒各路高手 - 你也来挑战下吗?