PostgreSQL 聚合函数讲解 - 3 总体|样本 方差, 标准方差

PostgreSQL自带了一些常用的统计学聚合函数, 非常好用.
本文介绍一下方差和标准差的一些聚合函数.


总体方差 : population covariance
总体标准差 : population standard deviation
样本方差 : sample covariance
样本标准差 : sample standard deviation
均值 :  mean

样本均值和样本方差的介绍 : 
http://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance
均值介绍 : 
http://en.wikipedia.org/wiki/Mean

对方差, 标准差, 均值不了解的话, 建议参考网易公开课, 统计学.
浅显易懂.
http://v.163.com/special/Khan/khstatistics.html
http://v.ku6.com/playlist/index_6598382.html

PostgreSQL计算方差, 标准差的聚合函数如下 : 
http://www.postgresql.org/docs/devel/static/functions-aggregate.html

其中stddev和variance是stddev_samp和var_samp的别名.
这些函数用于计算数据集的总体/样本 方差,总体/样本 标准差.
例如 : 
1,2,3,100 这组数据共4个值, 总体均值和样本均值分别为 : 
(1+2+3+100)/4 = 26.5
总体方差 : ((1-26.5)^2 + (2-26.5)^2 + (3-26.5)^2 + (100-26.5)^2)/4 = 1801.25
样本方差 : ((1-26.5)^2 + (2-26.5)^2 + (3-26.5)^2 + (100-26.5)^2)/(4-1) = 2401.6666....
总体标准差 : 平方根(总体方差) = 42.4411357058220109
样本标准差 : 平方根(样本方差) = 49.0068022489395513
使用PostgreSQL计算如下 : 
postgres=# select variance(id) from (values(1),(2),(3),(100)) as t(id);
       variance        
-----------------------
 2401.6666666666666667
(1 row)
postgres=# select var_pop(id) from (values(1),(2),(3),(100)) as t(id);
        var_pop        
-----------------------
 1801.2500000000000000
(1 row)
postgres=# select var_samp(id) from (values(1),(2),(3),(100)) as t(id);
       var_samp        
-----------------------
 2401.6666666666666667
(1 row)
postgres=# select stddev(id) from (values(1),(2),(3),(100)) as t(id);
       stddev        
---------------------
 49.0068022489395513
(1 row)
postgres=# select stddev_pop(id) from (values(1),(2),(3),(100)) as t(id);
     stddev_pop      
---------------------
 42.4411357058220109
(1 row)
postgres=# select stddev_samp(id) from (values(1),(2),(3),(100)) as t(id);
     stddev_samp     
---------------------
 49.0068022489395513
(1 row)

[参考]
1. src/backend/utils/adt/float.c
/*
 *              =========================
 *              FLOAT AGGREGATE OPERATORS
 *              =========================
 *
 *              float8_accum            - accumulate for AVG(), variance aggregates, etc.
 *              float4_accum            - same, but input data is float4
 *              float8_avg                      - produce final result for float AVG()
 *              float8_var_samp         - produce final result for float VAR_SAMP()
 *              float8_var_pop          - produce final result for float VAR_POP()
 *              float8_stddev_samp      - produce final result for float STDDEV_SAMP()
 *              float8_stddev_pop       - produce final result for float STDDEV_POP()
 *
 * The transition datatype for all these aggregates is a 3-element array
 * of float8, holding the values N, sum(X), sum(X*X) in that order.
 *
 * Note that we represent N as a float to avoid having to build a special
 * datatype.  Given a reasonable floating-point implementation, there should
 * be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the
 * user will have doubtless lost interest anyway...)
 */
..................
Datum
float8_var_pop(PG_FUNCTION_ARGS)
{
        ArrayType  *transarray = PG_GETARG_ARRAYTYPE_P(0);
        float8     *transvalues;
        float8          N,
                                sumX,
                                sumX2,
                                numerator;

        transvalues = check_float8_array(transarray, "float8_var_pop", 3);
        N = transvalues[0];
        sumX = transvalues[1];
        sumX2 = transvalues[2];

        /* Population variance is undefined when N is 0, so return NULL */
        if (N == 0.0)
                PG_RETURN_NULL();

        numerator = N * sumX2 - sumX * sumX;
        CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);

        /* Watch out for roundoff error producing a negative numerator */
        if (numerator <= 0.0)
                PG_RETURN_FLOAT8(0.0);

        PG_RETURN_FLOAT8(numerator / (N * N));
}

Datum
float8_var_samp(PG_FUNCTION_ARGS)
{
        ArrayType  *transarray = PG_GETARG_ARRAYTYPE_P(0);
        float8     *transvalues;
        float8          N,
                                sumX,
                                sumX2,
                                numerator;

        transvalues = check_float8_array(transarray, "float8_var_samp", 3);
        N = transvalues[0];
        sumX = transvalues[1];
        sumX2 = transvalues[2];

        /* Sample variance is undefined when N is 0 or 1, so return NULL */
        if (N <= 1.0)
                PG_RETURN_NULL();

        numerator = N * sumX2 - sumX * sumX;
        CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);

        /* Watch out for roundoff error producing a negative numerator */
        if (numerator <= 0.0)
                PG_RETURN_FLOAT8(0.0);

        PG_RETURN_FLOAT8(numerator / (N * (N - 1.0)));
}

Datum
float8_stddev_pop(PG_FUNCTION_ARGS)
{
        ArrayType  *transarray = PG_GETARG_ARRAYTYPE_P(0);
        float8     *transvalues;
        float8          N,
                                sumX,
                                sumX2,
                                numerator;

        transvalues = check_float8_array(transarray, "float8_stddev_pop", 3);
        N = transvalues[0];
        sumX = transvalues[1];
        sumX2 = transvalues[2];

        /* Population stddev is undefined when N is 0, so return NULL */
        if (N == 0.0)
                PG_RETURN_NULL();

        numerator = N * sumX2 - sumX * sumX;
        CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);

        /* Watch out for roundoff error producing a negative numerator */
        if (numerator <= 0.0)
                PG_RETURN_FLOAT8(0.0);

        PG_RETURN_FLOAT8(sqrt(numerator / (N * N)));
}

Datum
float8_stddev_samp(PG_FUNCTION_ARGS)
{
        ArrayType  *transarray = PG_GETARG_ARRAYTYPE_P(0);
        float8     *transvalues;
        float8          N,
                                sumX,
                                sumX2,
                                numerator;

        transvalues = check_float8_array(transarray, "float8_stddev_samp", 3);
        N = transvalues[0];
        sumX = transvalues[1];
        sumX2 = transvalues[2];

        /* Sample stddev is undefined when N is 0 or 1, so return NULL */
        if (N <= 1.0)
                PG_RETURN_NULL();

        numerator = N * sumX2 - sumX * sumX;
        CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);

        /* Watch out for roundoff error producing a negative numerator */
        if (numerator <= 0.0)
                PG_RETURN_FLOAT8(0.0);

        PG_RETURN_FLOAT8(sqrt(numerator / (N * (N - 1.0))));
}
上一篇:微信小程序引用阿里巴巴矢量图标iconfont


下一篇:调用微信支付接口总结