import tensorflow as tfimport numpy as np
def add_layer(inputs,in_size,out_size,activation_function=None): """initialize the Weights and biases""" Weights=tf.Variable(tf.random_normal([in_size,out_size])) biases=tf.Variable(tf.zeros([1,out_size])+0.1) W_biases=tf.matmul(inputs,Weights)+biases if activation_function is None: outputs=W_biases else: outputs=activation_function(W_biases) return outputs
x_data=np.linspace(-1,1,300)[:,newaxis]noise=np.random.normal(0,0.05,x_data.shape)y_data=np.square(x_data)-0.5+noise
x_batch=tf.placeholder(tf.float32,[None,1])y_batch=tf.placeholder(tf.float32,[None,1])
l1=add_layer(xs,1,10,activation_function=tf.nn.relu)prediction=(l1,10,1,activation_function=None)loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.initialize_all_variables()sess=tf.Session()sess.run(init)
for i in range(1500): sess.run(train_step,feed_dict={xs:x_data,ys:y_data}) if i%100==0: print(sess.run(loss,feen_dict={xs:x_data,ys:y_data}))