hihoCoder挑战赛11.题目4 : 高等理论计算机科学(LCA)

clj在某场hihoCoder比赛中的一道题,表示clj的数学题实在6,这道图论貌似还算可以。。。

题目链接:http://hihocoder.com/problemset/problem/1167

由于是中文题目,题意不再赘述。

对于任意两条小精灵的活动路径a和b,二者相交的判断条件为b的两个端点的LCA在a的路径上;那么我们可以首先将每个活动路径端点的LCA离线预处理出来,对每个节点LCA值+1。

然后以某个节点(我选择的是节点1)为根进行深搜,算出一条从节点1到节点x的LCA值和,那么任意路径a(假设其两端点分别是A和B)上的节点个数就是sum[A] + sum[B] - 2 * sum[LCA(A,B)]。

最后,对于某些点,如果它是不止一条路径的LCA,那么我们只需要对最终答案乘以C(LCAnum, 2)的组合数就好。

【PS:clj给出的题解中,采用了点分治+LCA的方式,虽然看懂了题意,但是表示对递归分治之后的路径,如何求出其上的LCAnum,并没有多好的想法,还望巨巨能指点一下,Thx~】

 #include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
#define MAXN 100010
struct Edge {
int to, next;
} edge[MAXN << ];
struct Node {
int to, next, num;
} Query[MAXN << ];
struct node {
int u, v, lca;
} input[MAXN];
int totEdge, totQuery, n, m;
int headEdge[MAXN], headQuery[MAXN];
int ancestor[MAXN], father[MAXN], LCAnum[MAXN], sum[MAXN];
bool vis[MAXN];
void addEdge(int from, int to) {
edge[totEdge].to = to;
edge[totEdge].next = headEdge[from];
headEdge[from] = totEdge++;
}
void addQuery(int from, int to, int x) {
Query[totQuery].to = to;
Query[totQuery].num = x;
Query[totQuery].next = headQuery[from];
headQuery[from] = totQuery++;
}
void init() {
memset(headEdge, -, sizeof(headEdge));
memset(headQuery, -, sizeof(headQuery));
memset(father, -, sizeof(father));
memset(vis, false, sizeof(vis));
memset(sum, , sizeof(sum));
memset(LCAnum, , sizeof(LCAnum));
totEdge = totQuery = ;
}
int find_set(int x) {
if(x == father[x]) return x;
else return father[x] = find_set(father[x]);
}
void union_set(int x, int y) {
x = find_set(x); y = find_set(y);
if(x != y) father[y] = x;
}
void Tarjan(int u) {
father[u] = u;
for(int i = headEdge[u]; i != -; i = edge[i].next) {
int v = edge[i].to;
if(father[v] != -) continue;
Tarjan(v);
union_set(u, v);
}
for(int i = headQuery[u]; i != -; i = Query[i].next) {
int v = Query[i].to;
if(father[v] == -) continue;
input[Query[i].num].lca = find_set(v);
}
}
void DFS(int u, int pre) {
vis[u] = ;
sum[u] = sum[pre] + LCAnum[u];
for(int i = headEdge[u]; i != -; i = edge[i].next) {
int v = edge[i].to;
if(vis[v]) continue;
DFS(v, u);
}
}
int main() {
init();
scanf("%d%d", &n, &m);
for(int i = ; i < n - ; i++) {
int a, b;
scanf("%d%d", &a, &b);
addEdge(a, b); addEdge(b, a);
}
for(int i = ; i < m; i++) {
int a, b;
scanf("%d%d", &a, &b);
input[i].u = a, input[i].v = b;
addQuery(a, b, i); addQuery(b, a, i);
}
Tarjan();
for(int i = ; i < m; i++)
LCAnum[input[i].lca]++;
DFS(, );
LL ans = ;
for(int i = ; i < m; i++) {
ans += (sum[input[i].u] + sum[input[i].v] - * sum[input[i].lca]);
}
for(int i = ; i <= n; i++) {
ans += (LL)LCAnum[i] * (LCAnum[i] - ) / ;
}
printf("%lld\n", ans);
return ;
}

转载:)

上一篇:所谓深度链接(Deep linking)


下一篇:MyBatis 动态 SQL trim 的应用,可以添加或删除前缀或后缀