4. Index_Iterator实现
这里就是需要实现迭代器的一些操作,比如begin、end、isend等等
下面是对于IndexIterator
的构造函数
template <typename KeyType, typename ValueType, typename KeyComparator>
IndexIterator<KeyType, ValueType, KeyComparator>::
IndexIterator(BPlusTreeLeafPage<KeyType, ValueType, KeyComparator> *leaf,
int index_, BufferPoolManager *buff_pool_manager):
leaf_(leaf), index_(index_), buff_pool_manager_(buff_pool_manager) {}
1. 首先我们来看begin函数的实现
- 利用key值找到叶子结点
- 然后获取当前key值的index就是begin的位置
INDEX_TEMPLATE_ARGUMENTS
INDEXITERATOR_TYPE BPLUSTREE_TYPE::Begin(const KeyType &key) {
auto leaf = reinterpret_cast<BPlusTreeLeafPage<KeyType, ValueType,KeyComparator> *>(FindLeafPage(key, false));
int index = 0;
if (leaf != nullptr) {
index = leaf->KeyIndex(key, comparator_);
}
return IndexIterator<KeyType, ValueType, KeyComparator>(leaf, index, buffer_pool_manager_);
}
2. end函数的实现
- 找到最开始的结点
- 然后一直向后遍历直到
nextPageId=-1
结束 - 这里注意需要重载
!=
和==
end
函数
INDEX_TEMPLATE_ARGUMENTS
INDEXITERATOR_TYPE BPLUSTREE_TYPE::end() {
KeyType key{};
auto leaf= reinterpret_cast<BPlusTreeLeafPage<KeyType, ValueType,KeyComparator> *>( FindLeafPage(key, true));
page_id_t new_page;
while(leaf->GetNextPageId()!=INVALID_PAGE_ID){
new_page=leaf->GetNextPageId();
leaf=reinterpret_cast<BPlusTreeLeafPage<KeyType, ValueType,KeyComparator> *>(buffer_pool_manager_->FetchPage(new_page));
}
buffer_pool_manager_->UnpinPage(new_page,false);
return IndexIterator<KeyType, ValueType, KeyComparator>(leaf, leaf->GetSize(), buffer_pool_manager_);
}
==和 !=
函数
bool operator==(const IndexIterator &itr) const {
return this->index_==itr.index_&&this->leaf_==itr.leaf_;
}
bool operator!=(const IndexIterator &itr) const {
return !this->operator==(itr);
}
3. 重载++和*(解引用符号)
- 重载++
简单的index++然后设置nextPageId即可
template <typename KeyType, typename ValueType, typename KeyComparator>
IndexIterator<KeyType, ValueType, KeyComparator> &IndexIterator<KeyType, ValueType, KeyComparator>::
operator++() {
//
// std::cout<<"++"<<std::endl;
++index_;
if (index_ == leaf_->GetSize() && leaf_->GetNextPageId() != INVALID_PAGE_ID) {
// first unpin leaf_, then get the next leaf
page_id_t next_page_id = leaf_->GetNextPageId();
auto *page = buff_pool_manager_->FetchPage(next_page_id);
if (page == nullptr) {
throw Exception("all page are pinned while IndexIterator(operator++)");
}
// first acquire next page, then release previous page
page->RLatch();
buff_pool_manager_->FetchPage(leaf_->GetPageId())->RUnlatch();
buff_pool_manager_->UnpinPage(leaf_->GetPageId(), false);
buff_pool_manager_->UnpinPage(leaf_->GetPageId(), false);
auto next_leaf =reinterpret_cast<BPlusTreeLeafPage<KeyType, ValueType,KeyComparator> *>(page->GetData());
assert(next_leaf->IsLeafPage());
index_ = 0;
leaf_ = next_leaf;
}
return *this;
};
- 重载*
return array[index]即可
template <typename KeyType, typename ValueType, typename KeyComparator>
const MappingType &IndexIterator<KeyType, ValueType, KeyComparator>::
operator*() {
if (isEnd()) {
throw "IndexIterator: out of range";
}
return leaf_->GetItem(index_);
}
5. 并发机制的实现
0. 首先复习一下读写??机制
- 读操作是可以多个进程之间共享latch的而写操作则必须互斥
- 加入
MaxReader
数就是为了防止等待的??写进程饥饿
首先来看如果没有??机制多线程会发生什么问题
- 线程T1想要删除44。
- 线程T2 想要查找41
- 假设T2在执行到D位置的时候又切换到线程T1
- 这个时候T1进行重新分配,会把41借到I结点上
- T1执行完成切换回T2这时候T2再去原来的执行寻找41就会找不到
就会出现下面的情况。?
由此我们需要读写??的存在
- 对于find操作
由于我们是只读操作,所以我们到下一个结点的时候就可以释放上一个结点的Latch
剩下的操作都是一样的
- 对于
delete
则不一样
因为我们需要写操作
这里我们不能释放结点A的Latch。因为我们的删除操作可能会合并根节点。
到D的时候。我们会发现D中的38删除之后不需要进行合并,所以对于A和B的写Write是可以安全释放了
- 对于
Insert
操作
这里我们就可以安全的释放掉A的锁。因为B中还有空位,我们插入是不会对A造成影响的
当我们执行到D这里发现D中已经满了。所以此时我们不会释放B的锁,因为我们会对B进行写操作
上面的算法虽然是正确的但是有瓶颈问题。由于只有一个线程可以获得写Latch。而插入和删除的时候都需要对头结点加写Latch。所以多线程在有许多个插入或者删除操作的时候,性能就会大打折扣
这里要引入乐观??
乐观的假设大部分操作是不需要进行合并和分裂的。因此在我们向下的时候都是读Latch而不是写Latch。只有在叶子结点才是write Latch
- 从上到下都是读Latch。而且逐步释放
- 到叶子结点需要修改的时候才为写Latch。这个删除是安全的所以直接结束
- 当我们到最后一步发现不安全的时候。则需要像上面我们没有引入乐观??的时候一样。重新执行一遍
B-Link Tree简介
延迟更新父结点
这里用一个??来标记这里需要被更新但是还没有执行
这个时候我们执行其他操作也是正确的比如查找31
这里我们执行insert 33
当执行到结点C的时候。因为这个时候有另一个线程持有了write Latch。所以这个时候??操作要执行。随后在插入33
最后一点补充关于扫描操作的
- 线程1在C结点上持有write Latch
- 线程2已经扫描完了结点B想要获得结点C的read Latch
这时候会发生问题,因为线程2无法拿到read Latch
这里有几种解决方法
- 可以等到T1的写操作完成
- 可以重新执行T2
- 可以直接让线程T2停止抢得这个Latch。
注意这里的Latch
和Lock
并不一样
1. 辅助函数UnlockUnpinPages
的实现
- 如果是读操作则释放read锁
- 否则释放write锁
INDEX_TEMPLATE_ARGUMENTS
void BPLUSTREE_TYPE::
UnlockUnpinPages(Operation op, Transaction *transaction) {
if (transaction == nullptr) {
return;
}
for (auto page:*transaction->GetPageSet()) {
if (op == Operation::READ) {
page->RUnlatch();
buffer_pool_manager_->UnpinPage(page->GetPageId(), false);
} else {
page->WUnlatch();
buffer_pool_manager_->UnpinPage(page->GetPageId(), true);
}
}
transaction->GetPageSet()->clear();
for (const auto &page_id: *transaction->GetDeletedPageSet()) {
buffer_pool_manager_->DeletePage(page_id);
}
transaction->GetDeletedPageSet()->clear();
// if root is locked, unlock it
node_mutex_.unlock();
}
四个自带的解锁和上锁操作
/** Acquire the page write latch. */
inline void WLatch() { rwlatch_.WLock(); }
/** Release the page write latch. */
inline void WUnlatch() { rwlatch_.WUnlock(); }
/** Acquire the page read latch. */
inline void RLatch() { rwlatch_.RLock(); }
/** Release the page read latch. */
inline void RUnlatch() { rwlatch_.RUnlock(); }
这里的rwlatch是自己实现的读写锁类下面来探究一下这个类
由于c++ 并发编程我现在还不太会。。。所以就简单看一下啦后面学完并发编程再补充
-
WLock
函数- 首先获取一个锁
- 用一个记号
writer_entered
表示是否有写操作 - 如果之前已经有了现在的操作就需要等(这个线程处于阻塞状态)
- 当前如果有其他线程执行读操作。则仍需要阻塞(别人读的时候你不能写)
void WLock() { std::unique_lock<mutex_t> latch(mutex_); while (writer_entered_) { reader_.wait(latch); } writer_entered_ = true; while (reader_count_ > 0) { writer_.wait(latch); } }
-
WunLock
函数- 写标记置为false
- 然后通知所有的线程
void WUnlock() { std::lock_guard<mutex_t> guard(mutex_); writer_entered_ = false; reader_.notify_all(); }
-
RLock
函数- 如果当前有人在写或者已经有最多的人读了则阻塞
- 否则只需要让读的计数++
因为是允许多个线程一起读这样并不会出错
void RLock() { std::unique_lock<mutex_t> latch(mutex_); while (writer_entered_ || reader_count_ == MAX_READERS) { reader_.wait(latch); } reader_count_++; }
-
RUnLatch
函数- 计数--
- 如果当前有人在写并且无人读的话需要通知所有其他线程
- 如果在计数--之前达到了最大读数,释放这个锁之后需要通知其他线程,现在又可以读了。
void RUnlock() { std::lock_guard<mutex_t> guard(mutex_); reader_count_--; if (writer_entered_) { if (reader_count_ == 0) { writer_.notify_one(); } } else { if (reader_count_ == MAX_READERS - 1) { reader_.notify_one(); } } }
6. Summary
好了终于磕磕绊绊的写完了Lab2.关于数据库的Lab2应该会停一段时间。这段时间要补一补深度学习(毕竟要毕业)然后赶工一下老师给的活。同时学一下c++并发编程和看一下侯捷老师的课程。
最后附上GitHub的??
https://github.com/JayL-zxl/CMU15-445Lab