Step1 特征提取
colmap feature_extractor \
--SiftExtraction.use_gpu 0 \
--database_path $PROJECT/database.db\
--image_path $DATA_ROOT/$PROJECT/images
Step2 特征匹配
colmap exhaustive_matcher\
--SiftMatching.use_gpu 0\
--database_path $PROJECT/database.db
Step2 特征匹配
colmap exhaustive_matcher\
--SiftMatching.use_gpu 0\
--database_path $PROJECT/database.db
Step3 空三
colmap mapper\
--database_path $PROJECT/database.db \
--image_path $DATA_ROOT/$PROJECT/images \
--output_path $PROJECT/sparse
Step4 影像去畸变
colmap image_undistorter \
--image_path $DATA_ROOT/$PROJECT/images \
--input_path $PROJECT/sparse/0 \
--output_path $PROJECT/dense \
--output_type COLMAP \
- here --output_type, you could find the usage at colmap
Step5 模型转换
colmap model_converter \
--input_path $PROJECT/dense/sparse \
--output_path $PROJECT/dense/sparse \
--output_type TXT
- Under this step, you will see three txt file will be created at $PROJECT/dense/sparse dir.
- cameras.txt, images.txt, point3D.txt
- But you could choice another place to save them.
- And PINHOLE is in cameras.txt you will see.
Step6 格式转换
InterfaceCOLMAP \
--working-folder $(pwd)/$PROJECT/ \
--input-file $(pwd)/$PROJECT/ \
--output-file $(pwd)/$PROJECT/model_colmap.mvs
Step7 密集重建
DensifyPointCloud \
--input-file $(pwd)/$PROJECT/model_colmap.mvs \
--working-folder $(pwd)/$PROJECT/ \
--output-file $(pwd)/$PROJECT/model_dense.mvs \
--archive-type -1 \
- Here --archive-type -1 must be set
Step8 构网
ReconstructMesh --input-file $(pwd)/$PROJECT/model_dense.mvs \
--working-folder $(pwd)/$PROJECT/ \
--output-file $(pwd)/$PROJECT/model_dense_mesh.mvs
Step9 网格精化
RefineMesh \
--resolution-level 1 \
--input-file $(pwd)/$PROJECT/model_dense_mesh.mvs \
--working-folder $(pwd)/$PROJECT/ \
--output-file $(pwd)/$PROJECT/model_dense_mesh_refine.mvs
Step10 纹理映射
TextureMesh \
--export-type obj \
--output-file $(pwd)/$PROJECT/model.obj \
--working-folder $(pwd)/$PROJECT/ \
--input-file $(pwd)/$PROJECT/model_dense_mesh_refine.mvs