通过flume将日志数据读取到kafka中,然后再利用spark去消费kafka的数据,
1.保证zookeeper服务一直开启
2.配置flume文件,其配置信息如下
a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /opt/data/wfbmall/16/wfbmall.log # Describe the sink #a1.sinks.k1.type = logger a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a1.sinks.k1.topic = test a1.sinks.k1.brokerList = master:9092 a1.sinks.k1.requiredAcks = 1 a1.sinks.k1.batchSize = 20 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 10000 a1.channels.c1.byteCapacityBufferPercentage = 20 a1.channels.c1.byteCapacity = 800000 a1.channels.c1.transactionCapacity = 100 a1.channels.c1.keep-alive = 60 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
可以通过 来查看kafka里的数据
[root@master ~]# /opt/soft/kafka_2.11-0.11/bin/kafka-console-consumer.sh --bootstrap-server master:9092 --from-beginning --topic test
4.最后可以配置saprk 进行实时统计数据
# coding=UTF-8 from __future__ import print_function import sys from pyspark import SparkContext from pyspark.streaming import StreamingContext from pyspark.streaming.kafka import KafkaUtils sc = SparkContext(appName="streamingkafka") sc.setLogLevel("WARN") # 减少shell打印日志 ssc = StreamingContext(sc, 5) # 5秒的计算窗口 brokers='master:9092' topic = 'test' kafka_streaming_rdd = KafkaUtils.createDirectStream(ssc, [topic], {"metadata.broker.list": brokers}) lines_rdd = kafka_streaming_rdd.map(lambda x: x[1]).filter(lambda x: "login, start" in x).map(lambda x: ("login_start", 1)).reduceByKey(lambda a, b : a + b) lines_rdd.pprint() ssc.start() ssc.awaitTermination()
5.进行调用文件
[root@master spark-2.4.5]# bin/spark-submit --jars jars/spark-streaming-kafka-0-8_2.11-2.3.3.jar bin/kafka-spark_20210401.py
其显示结果为