【Ch1】机器学习基础

【Ch1】机器学习基础

1,监督学习

训练含有很多特征的数据集,不过数据集中的样本都有一个标签或目标。

监督学习是目前最常见的机器学习类型。给定一组样本(通常由人工标注),它可以学会将 输入数据映射到已知目标。
虽然监督学习主要包括分类和回归,但还有更多的奇特变体,主要包括如下几种:

1.序列生成(sequence generation)。给定一张图像,预测描述图像的文字。序列生成有时 可以被重新表示为一系列分类问题,比如反复预测序列中的单词或标记。

2.语法树预测(syntax tree prediction)。给定一个句子,预测其分解生成的语法树。

3.目标检测(object detection)。给定一张图像,在图中特定目标的周围画一个边界框。这个问题也可以表示为分类问题(给定多个候选边界框,对每个框内的目标进行分类)或分类与回归联合问题(用向量回归来预测边界框的坐标)。
4.图像分割(image segmentation)。给定一张图像,在特定物体上画一个像素级的掩模(mask)。

2,无监督学习

无监督学习是指在没有目标的情况下寻找输入数据的有趣变换,其目的在于数据可视化、数据压缩、数据去噪或更好地理解数据中的相关性。无监督学习是数据分析的必备技能,在解决监督学习问题之前,为了更好地了解数据集,它通常是一个必要步骤。降维(dimensionality reduction)和聚类(clustering)都是众所周知的无监督学习方法。

3,自监督学习

自监督学习是监督学习的一个特例,它与众不同,值得单独归为一类。自监督学习是没有人工标注的标签的监督学习,你可以将它看作没有人类参与的监督学习。标签仍然存在(因为总要有什么东西来监督学习过程),但它们是从输入数据中生成的,通常是使用启发式算法生成的。
举个例子,自编码器(autoencoder)是有名的自监督学习的例子,其生成的目标就是未经修改的输入。同样,给定视频中过去的帧来预测下一帧,或者给定文本中前面的词来预测下一个词,都是自监督学习的例子[这两个例子也属于时序监督学习(temporally supervised learning),即用未来的输入数据作为监督]。注意,监督学习、自监督学习和无监督学习之间的区别有时很模糊,这三个类别更像是没有明确界限的连续体。自监督学习可以被重新解释为监督学习或无监督学习,这取决于关注的是学习机制还是应用场景。

4,强化学习

强化学习一直以来被人们所忽视,但最近随着 Google 的 DeepMind 公司将其成功应用于学习玩 Atari 游戏(以及后来学习下围棋并达到最高水平),机器学习的这一分支开始受到大量关注。在强化学习中,智能体(agent)接收有关其环境的信息,并学会选择使某种奖励最大化的行动。例如,神经网络会“观察”视频游戏的屏幕并输出游戏操作,目的是尽可能得高分,这种神经网络可以通过强化学习来训练。

上一篇:Libevent源码学习笔记一:event2/event.h


下一篇:编译原理:CH1绪论