daal4py 随机森林模型训练mnist并保存模型给C++ daal predict使用

# daal4py Decision Forest Classification Training example Serialization

import daal4py as d4p
import numpy as np
import pickle
from sklearn.datasets import fetch_mldata
from sklearn.model_selection import train_test_split def get_mnist():
mnist = fetch_mldata('MNIST original')
X_train, X_test, y_train, y_test = train_test_split(mnist.data, mnist.target, train_size=60000, test_size=10000)
data = np.ascontiguousarray(X_train, dtype=np.float32)
labels = np.ascontiguousarray(y_train, dtype=np.float32).reshape(y_train.shape[0],1) return data, labels # serialized model can be used only by daal4py with pickle
def pickle_serialization(result, file='df_result.pkl'):
with open(file,'wb') as out:
pickle.dump(result, out) # universal naitive DAAL model serializtion. Can be used in all DAAL interfaces C++/Java/pydaal/daal4py
def native_serialization(result, file='native_result.txt'):
daal_buff = result.__getstate__()
File = open(file, "wb")
File.write(daal_buff) if __name__ == "__main__":
data, labels = get_mnist() # 'fptype' parameter should be the same type as input numpy arrays to archive the best performance
# (no data conversation in this case)
train = d4p.decision_forest_classification_training(10, fptype='float', nTrees=100, minObservationsInLeafNode=1,
engine = d4p.engines_mt19937(seed=777),bootstrap=True)
result = train.compute(data, labels) # serialize model to file
pickle_serialization(result)
native_serialization(result)

  

python预测

import daal4py as d4p

import numpy as np
import pickle
from sklearn.datasets import fetch_mldata
from sklearn.model_selection import train_test_split def get_mnist_test():
mnist = fetch_mldata('MNIST original')
X_train, X_test, y_train, y_test = train_test_split(mnist.data, mnist.target, train_size=60000, test_size=10000)
pdata = np.ascontiguousarray(X_test, dtype=np.float32)
plabels = np.ascontiguousarray(y_test, dtype=np.float32).reshape(y_test.shape[0],1) return pdata, plabels def checkAccuracy(plabels, prediction):
t = 0
count = 0
for i in plabels:
if i != prediction[t]:
count = count + 1
t = t + 1
return (1 - count/t) def pickle_deserialization(file='df_result.pkl'):
with open(file,'rb') as inp:
return pickle.load(inp) def native_deserialization(file='native_result.txt'):
daal_result = d4p.decision_forest_classification_training_result()
File = open(file, "rb")
daal_buff = File.read()
daal_result.__setstate__(daal_buff)
return daal_result if __name__ == "__main__":
nClasses = 10 pdata, plabels = get_mnist_test() #deserialize model
deserialized_result_pickle = pickle_deserialization() deserialized_result_naitive = native_deserialization() # now predict using the deserialized model from the training above, fptype is float as input data
predict_algo = d4p.decision_forest_classification_prediction(nClasses, fptype='float') # just set pickle-obtained model into compute
predict_result = predict_algo.compute(pdata, deserialized_result_pickle.model) print("\nAccuracy:", checkAccuracy(plabels, predict_result.prediction)) # the same result as above. just set native-obtained model into compute
predict_result = predict_algo.compute(pdata, deserialized_result_naitive.model) print("\nAccuracy:", checkAccuracy(plabels, predict_result.prediction))

c++使用该daal4py的模型:  

/**
* <a name="DAAL-EXAMPLE-CPP-DF_CLS_DENSE_BATCH"></a>
* \example df_cls_dense_batch.cpp
*/ #include "daal.h"
#include "service.h"
#include "stdio.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::decision_forest::classification; /* Input data set parameters */
const string testDatasetFileName = "../data/batch/mnist_test_data.csv";
const string labels = "../data/batch/mnist_test_labels.csv"; const size_t nFeatures = 784; /* Number of features in training and testing data sets */
const size_t nClasses = 10; /* Number of classes */ void testModel();
void loadData(const std::string& dataFileName, const std::string& labelsFileName, NumericTablePtr& pData, NumericTablePtr& pDependentVar);
void check_accuracy(NumericTablePtr prediction, NumericTablePtr testGroundTruth); int main(int argc, char *argv[])
{
checkArguments(argc, argv, 2, &labels, &testDatasetFileName); /* Deserialization */
size_t size = 0;
byte * buffer = NULL;
FILE * pFile;
size_t result; pFile = fopen ( "../data/batch/native_result.txt" , "rb" );
if (pFile==NULL)
{
fputs ("File error",stderr);
exit (1);
} // obtain file size:
fseek (pFile , 0 , SEEK_END);
size = ftell (pFile);
std::cout << "size: " << size << "\n";
rewind(pFile); // allocate memory to contain the whole file:
buffer = (byte*) malloc (sizeof(byte)*size);
if (buffer == NULL)
{
fputs ("Memory error",stderr);
exit (2);
} // copy the file into the buffer:
result = fread (buffer,1,size,pFile);
if (result != size)
{
fputs ("Reading error",stderr);
exit (3);
}
/* the result buffer is now loaded in the buffer. */ /* Create a data archive to deserialize the numeric table */
OutputDataArchive out_dataArch(buffer, size);
free (buffer);
fclose (pFile); /* needed for result allocation */
training::Batch<> train(nClasses);
train.getResult()->deserialize(out_dataArch); /* Create Numeric Tables for testing data and ground truth values */
NumericTablePtr testData;
NumericTablePtr testGroundTruth; loadData(testDatasetFileName, labels, testData, testGroundTruth);
/* Create an algorithm object to predict values of decision forest classification */
prediction::Batch<> algorithm(nClasses); /* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(classifier::prediction::data, testData);
/* set deserialized model */
algorithm.input.set(classifier::prediction::model, train.getResult()->get(classifier::training::model)); /* Predict values of decision forest classification */
algorithm.compute(); /* Retrieve the algorithm results */
NumericTablePtr prediction = algorithm.getResult()->get(classifier::prediction::prediction);
printNumericTable(prediction, "Prediction results (first 10 rows):", 10);
printNumericTable(testGroundTruth, "Ground truth (first 10 rows):", 10); check_accuracy(prediction, testGroundTruth); return 0;
} void check_accuracy(NumericTablePtr prediction, NumericTablePtr testGroundTruth)
{
/* check accuracy */
BlockDescriptor<double> blockPr;
prediction->getBlockOfRows(0, prediction->getNumberOfRows(), readOnly, blockPr); double* valueP = (blockPr.getBlockPtr()); BlockDescriptor<double> blockGT;
testGroundTruth->getBlockOfRows(0, testGroundTruth->getNumberOfRows(), readOnly, blockGT); double* valueG = (blockGT.getBlockPtr()); size_t count = 0;
for(size_t i = 0; i < testGroundTruth->getNumberOfRows(); i++)
{
if(valueG[i] != valueP[i])
count++;
}
testGroundTruth->releaseBlockOfRows(blockGT);
prediction->releaseBlockOfRows(blockPr);
cout << "accuracy: " << 1- double(count)/double(testGroundTruth->getNumberOfRows()) << "\n";
} void loadData(const std::string& dataFileName,const std::string& labelsFileName, NumericTablePtr& pData, NumericTablePtr& pDependentVar)
{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> trainDataSource(dataFileName,
DataSource::notAllocateNumericTable,
DataSource::doDictionaryFromContext); FileDataSource<CSVFeatureManager> trainLabels(labelsFileName,
DataSource::notAllocateNumericTable,
DataSource::doDictionaryFromContext); /* Create Numeric Tables for training data and dependent variables */
pData.reset(new HomogenNumericTable<>(nFeatures, 0, NumericTable::notAllocate));
pDependentVar.reset(new HomogenNumericTable<>(1, 0, NumericTable::notAllocate)); /* Retrieve the data from input file */
trainDataSource.loadDataBlock(pData.get());
trainLabels.loadDataBlock(pDependentVar.get());
NumericTableDictionaryPtr pDictionary = pData->getDictionarySharedPtr();
}

  

上一篇:网址导航18B


下一篇:Js代码一些要素