多线程教程(二十六)字段更新器、原子累加器

多线程教程(二十六)字段更新器、原子累加器

一、字段更新器

常见的字段更新器:

  • AtomicReferenceFieldUpdater // 域 字段

  • AtomicIntegerFieldUpdater

  • AtomicLongFieldUpdater

利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现异常

Exception in thread "main" java.lang.IllegalArgumentException: Must be volatile type

示例:

public class Test5 {
    private volatile int field;
    public static void main(String[] args) {
        AtomicIntegerFieldUpdater fieldUpdater =
            AtomicIntegerFieldUpdater.newUpdater(Test5.class, "field");
        Test5 test5 = new Test5();
        fieldUpdater.compareAndSet(test5, 0, 10);
        // 修改成功 field = 10
        System.out.println(test5.field);
        // 修改成功 field = 20
        fieldUpdater.compareAndSet(test5, 10, 20);
        System.out.println(test5.field);
        // 修改失败 field = 20
        fieldUpdater.compareAndSet(test5, 10, 30);
        System.out.println(test5.field);
    }
}

输出

10 
20 
20

二、原子累加器

原子累加器主要解决多线程情况下i++线程不安全的问题

1.累加器性能比较

private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {
    T adder = adderSupplier.get();
    long start = System.nanoTime();
    List<Thread> ts = new ArrayList<>();
    // 4 个线程,每人累加 50 万
    for (int i = 0; i < 40; i++) {
        ts.add(new Thread(() -> {
            for (int j = 0; j < 500000; j++) {
                action.accept(adder);
            }
        }));
    }
    ts.forEach(t -> t.start());
    ts.forEach(t -> {
        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    long end = System.nanoTime();
    System.out.println(adder + " cost:" + (end - start)/1000_000);
}

比较 AtomicLong 与 LongAdder

for (int i = 0; i < 5; i++) {
    demo(() -> new LongAdder(), adder -> adder.increment());
}
for (int i = 0; i < 5; i++) {
    demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());
}

输出

1000000 cost:43 
1000000 cost:9 
1000000 cost:7 
1000000 cost:7 
1000000 cost:7 
1000000 cost:31 
1000000 cost:27 
1000000 cost:28 
1000000 cost:24 
1000000 cost:22

性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加Cell[1]… 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。

LongAdder设计非常巧妙,有兴趣可以去看看他的代码和设计原理,这里就不做介绍了。后面会对其中最重要的伪共享进行介绍。

上一篇:__attribute__


下一篇:git config命令使用