一、简介
1 模拟退火算法的应用背景
模拟退火算法提出于1982年。Kirkpatrick等人首先意识到固体退火过程与优化问题之间存在着类似性;Metropolis等人对固体在恒定温度下达到热平衡过程的模拟也给他们以启迪。通过把Metropolis 算法引入到优化过程中,最终得到一种对 Metropolis 算法进行迭代的优化算法,这种算法类似固体退火过程,称之为“模拟退火算法”。
模拟退火算法是一种适合求解大规模组合优化问题的随机搜索算法。目前,模拟退火算法在求解 TSP,VLSI 电路设计等组合优化问题上取得了令人满意的结果。将模拟退火算法同其它的计算智能方法相结合,应用到各类复杂系统的建模和优化问题中也得到了越来越多的重视,已经逐渐成为一种重要的发展方向。
2 模拟退火算法介绍
3 模拟退火算法的参数
模拟退火是一种优化算法,它本身是不能独立存在的,需要有一个应用场合,其中温度就是模拟退火需要优化的参数,如果它应用到了聚类分析中,那么就是说聚类分析中有某个或者某几个参数需要优化,而这个参数,或者参数集就是温度所代表的。它可以是某项指标,某项关联度,某个距离等等。
二、源代码
clc;
clear;
close all;
%% Problem Definition
model=CreateModel(); % Create Model of the Problem
CostFunction=@(q) MyCost(q,model); % Cost Function
nVar=model.nVar; % Number of Decision Variables
VarSize=[1 nVar]; % Size of Decision Variables Matrix
%% SA Parameters
MaxIt=500; % Maximum Number of Iterations
MaxIt2=25; % Maximum Number of Inner Iterations
T0=10; % Initial Temperature
alpha=0.97; % Temperature Damping Rate
%% Initialization
% Create Initial Solution
x.Position=CreateRandomSolution(model);
[x.Cost, x.Sol]=CostFunction(x.Position);
% Update Best Solution Ever Found
BestSol=x;
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,1);
% Set Initial Temperature
T=T0;
%% SA Main Loop
for it=1:MaxIt
for it2=1:MaxIt2
% Create Neighbor
xnew.Position=CreateNeighbor(x.Position);
[xnew.Cost, xnew.Sol]=CostFunction(xnew.Position);
if xnew.Cost<=x.Cost
% xnew is better, so it is accepted
x=xnew;
else
% xnew is not better, so it is accepted conditionally
delta=xnew.Cost-x.Cost;
p=exp(-delta/T);
if rand<=p
x=xnew;
end
end
function model=CreateModel()
p=[ 48 27 18 15
23 52 50 59
35 39 25 10
45 38 36 49
55 56 18 51
58 24 40 54
37 48 23 14
17 48 43 30
17 29 45 23
23 38 48 50
52 13 32 32
22 12 14 56
51 37 21 19
22 49 56 23
57 57 17 17
27 16 52 16
20 39 37 54
22 33 60 39
41 10 13 38
34 27 32 17];
I=size(p,1);
J=size(p,2);
s(:,:,1)=[4 7 5 7 7 5 2 7 5 3 8 6 6 6 7 2 6 2 8 6
3 5 8 5 6 6 5 2 7 4 2 2 5 2 4 7 5 2 3 4
6 8 6 8 3 2 7 8 4 2 3 2 4 7 3 4 5 3 3 4
3 4 3 6 6 6 8 8 5 5 2 7 2 2 2 6 6 3 4 5
2 7 3 6 2 4 3 8 2 4 5 8 7 2 7 8 2 4 2 4
7 4 4 7 6 2 3 8 3 3 2 5 4 6 3 5 4 4 6 4
3 7 7 8 6 5 5 7 6 3 8 2 6 4 4 6 7 3 4 5
5 7 7 8 7 3 6 5 4 8 3 7 7 6 5 7 6 3 8 7
6 4 7 2 8 2 4 3 8 6 2 4 2 7 3 5 2 8 4 4
4 3 4 8 8 3 3 4 2 5 4 4 2 6 6 6 2 6 6 5
7 7 5 6 7 3 8 2 8 8 5 7 5 7 5 2 2 5 3 2
4 8 2 8 6 3 2 2 5 2 2 2 5 3 3 8 2 3 4 2
6 4 2 5 8 2 2 8 6 7 8 2 8 7 7 3 4 3 3 4
6 6 2 5 6 6 2 4 8 7 4 6 7 8 2 3 6 2 7 4
5 5 6 7 2 3 3 4 4 5 4 6 7 8 4 7 7 8 8 6
2 7 5 3 2 5 6 4 4 3 2 5 2 2 3 5 5 6 4 8
4 7 3 5 8 6 6 5 5 6 4 7 2 4 5 7 2 5 6 8
4 3 5 8 5 5 2 6 7 4 2 6 2 4 2 4 6 4 4 5
3 8 3 6 7 5 8 2 7 2 5 7 7 6 4 3 2 3 5 3
3 8 2 7 3 5 7 7 2 3 7 4 8 6 2 2 2 6 7 7];
s(:,:,2)=[7 7 7 6 3 3 2 4 7 2 5 7 3 5 4 4 5 8 4 5
7 7 3 4 4 3 3 6 6 3 5 4 3 5 2 2 6 5 6 3
7 2 2 8 2 5 3 7 2 2 8 5 6 8 3 3 4 7 8 8
2 5 7 3 6 3 2 6 7 5 7 8 6 4 3 7 2 6 7 7
6 4 6 6 3 7 2 5 8 3 5 5 6 5 4 7 5 2 5 8
5 5 7 6 2 8 6 6 7 8 8 4 6 8 3 8 4 5 7 3
3 4 6 4 7 2 8 5 2 2 2 6 2 2 4 6 7 6 4 6
2 4 4 2 4 5 4 2 4 2 4 4 4 8 2 2 7 5 8 6
7 3 4 2 6 2 4 7 6 5 8 7 5 3 8 8 6 4 8 2
3 3 7 4 4 7 8 8 7 7 8 4 3 6 2 7 2 8 8 4
3 2 4 3 6 8 8 4 3 4 6 5 7 6 8 4 2 7 4 3
6 8 7 7 2 2 6 8 3 3 6 6 7 6 4 5 5 7 5 7
8 6 7 4 8 8 8 4 6 4 4 8 3 4 2 8 4 4 3 3
5 8 7 7 7 2 7 8 5 3 8 4 7 6 4 7 8 6 7 8
6 3 5 7 7 6 4 5 6 5 2 7 2 7 7 7 8 8 8 7
3 8 6 5 7 7 6 4 3 8 7 7 7 2 7 5 4 8 8 4
8 7 8 3 4 5 3 3 3 6 6 8 2 2 5 5 7 6 5 5
5 6 5 8 6 8 4 2 7 2 7 2 6 8 6 5 8 3 6 6
6 5 2 3 6 8 6 4 7 4 4 4 4 6 8 3 6 6 3 7
2 3 8 8 5 6 5 7 8 2 7 6 7 3 2 7 8 2 8 6];
s(:,:,3)=[6 5 8 5 4 6 3 8 2 3 6 5 3 6 7 2 6 5 7 8
4 6 5 6 5 5 5 6 3 2 6 7 2 5 4 6 6 7 6 5
5 8 5 7 4 3 2 5 2 6 5 3 4 6 6 2 3 8 8 2
6 7 4 5 7 6 7 7 5 8 3 4 6 3 2 6 2 7 2 2
8 4 5 3 7 2 7 5 3 8 7 3 6 2 2 7 3 4 6 7
7 7 5 5 5 6 8 5 4 3 3 4 5 5 8 3 8 5 3 5
2 2 2 4 6 6 8 6 4 5 4 4 5 3 3 5 8 7 7 4
6 2 8 8 8 2 5 4 2 4 8 5 4 8 6 5 6 2 3 7
5 2 2 6 7 2 3 3 5 5 7 2 5 8 8 2 7 2 5 4
5 3 5 6 6 3 2 6 6 3 4 5 7 4 3 5 3 3 4 5
2 4 7 7 2 2 5 8 3 2 4 3 7 2 3 6 6 5 7 6
7 4 4 4 4 5 6 4 7 5 6 3 6 6 4 3 7 8 6 8
4 2 6 5 6 7 7 2 2 3 8 3 7 7 8 7 4 6 3 4
3 5 7 5 5 6 2 5 4 2 8 3 6 8 4 8 8 4 4 6
4 2 8 3 2 5 6 4 2 8 6 8 2 2 3 7 2 4 2 8
4 3 8 5 3 8 5 4 3 5 4 8 5 5 3 5 4 7 6 2
5 6 3 6 7 2 3 7 2 8 7 7 4 6 4 3 5 8 5 6
5 8 3 4 2 8 8 4 3 7 5 7 2 6 4 7 2 6 3 4
4 8 8 7 8 2 6 4 2 2 8 3 3 7 2 3 7 3 3 4
4 5 6 7 2 5 5 4 3 6 2 4 3 6 5 8 5 2 5 3];
s(:,:,4)=[7 7 8 3 8 2 5 2 3 8 2 5 7 7 3 4 7 6 8 7
8 5 2 3 6 7 6 4 7 6 4 8 5 8 8 4 7 3 5 6
3 3 2 4 4 4 8 8 4 6 7 7 4 3 6 8 4 5 8 5
7 5 4 8 7 7 3 5 4 7 3 8 7 2 8 6 5 7 7 3
3 5 6 5 8 5 7 4 3 2 7 3 5 3 5 8 8 3 5 8
8 8 5 4 5 5 6 3 7 8 6 5 8 4 8 3 6 4 6 5
7 7 8 3 5 2 5 5 6 4 7 2 8 4 2 7 7 5 8 2
4 8 5 8 4 2 8 8 7 2 7 7 4 8 6 6 3 4 3 6
7 6 5 4 2 2 4 2 7 7 4 6 5 2 7 3 6 7 4 5
5 4 5 7 3 6 3 5 2 3 4 8 4 6 3 5 6 8 8 2
7 8 6 6 2 3 6 7 8 3 5 8 6 3 8 4 8 3 4 8
4 5 2 4 5 7 6 2 5 6 4 8 7 7 7 6 2 3 6 4
2 3 7 8 2 8 4 6 7 3 7 4 7 3 7 7 5 6 8 3
6 4 2 7 8 8 7 8 7 4 7 2 2 5 6 2 5 4 8 2
8 6 5 5 6 5 8 3 7 4 5 5 7 8 7 7 2 8 6 4
3 5 3 7 2 3 8 2 3 4 3 3 2 4 4 7 8 8 2 3
5 7 4 8 2 3 2 6 5 4 6 3 4 2 3 4 8 6 2 6
7 8 6 5 3 5 3 8 6 6 3 4 7 3 4 5 5 8 6 2
2 8 3 4 5 7 2 6 8 3 5 2 7 4 6 6 7 4 5 3
8 5 3 6 2 4 6 8 7 3 4 7 4 4 7 6 3 6 8 3];
model.I=I;
model.J=J;
model.p=p;
model.s=s;
model.nVar=I+J-1;
end