[https://www.acwing.com/problem/content/description/102/]
sol:
区间加减首先想到差分,差分可以将区间操作转化为单点操作。设差分数组为 \(b\),那么题目就转化为:
1.求将 \(b_2\) ~ \(b_n\)都变为\(0\)的最小操作次数。
2.再最小操作次数下, \(b_1\) 有多少种取值。
接下来就非常简单了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 1e5 + 100;
typedef long long LL;
LL n, a[N], b[N];
LL sum1, sum2;
int main()
{
scanf("%lld", &n);
for(int i = 1; i <= n; i ++) {
scanf("%lld", &a[i]);
if( i == 1) continue;
b[i] = a[i] - a[i - 1];
if( b[i] > 0)
sum1 += b[i];
else
sum2 -= b[i];
}
printf("%lld\n", max(sum1, sum2));
printf("%lld\n", abs(sum1 - sum2) + 1ll);
return 0;
}