数据仓库专题(2)-Kimball维度建模四步骤

一、前言

  四步过程维度建模由Kimball提出,可以做为业务梳理、数据梳理后进行多维数据模型设计的指导流程,但是不能作为数据仓库系统建设的指导流程。本文就相关流程及核心问题进行解读。

二、数据仓库建设流程

  以下流程是根据业务系统、组织结构、团队结构现状设定的数据仓库系统建设流程,适合系统结构复杂,团队协作复杂,人员结构复杂的情况,并且数据仓库建设团队和业务系统建设团队不同的情况。具体流程如下图所示:

数据仓库专题(2)-Kimball维度建模四步骤

 

图1 数据仓库系统建设流程

 

三、四步维度建模

  Kimball四步建模流程适合上述数据仓库系统建设流程中模型设计环节,重点解决数据粒度、维度设计和事实表设计问题。四步建模流程如下图所示:

数据仓库专题(2)-Kimball维度建模四步骤

三、流程解读

  3.1 如何确定粒度

    最细粒度和聚合粒度之争?留给大家来辩驳吧,大家可以在评论中发表各自的观点。

  3.1 如何标识维度

    标识维度解决的是业务人员如何描述来自业务过程的数据,维度用来表示“谁、什么、何时、何处、为何、如何”的问题。以竞价广告检索流程而言就是客户通过什么渠道、什么样的客户端(OS、IP)、检索了什么样的内容、请求最终有谁受理等。

  3.2 如何标识事实

    标识事实其实是在确定业务过程的度量指标,指标何来?哪些指标必须保留,那些指标必须删除,待定指标如何处理?必须综合考虑业务用户需求和现实数据的实际情况。事实表的设计完全依赖于物理活动,不受可能产生的最终报表的影响,报表只是事实表设计的参考视角。

四、未完待续

  数据仓库专题作为项目笔记,持续更新中,敬请关注。


作者:张子良
出处:http://www.cnblogs.com/hadoopdev
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

上一篇:Wikibon:公有云大数据收入至2026年将占大数据市场的24%


下一篇:虚拟机文件丢失怎么恢复数据