以下转自:https://www.cnblogs.com/JVxie/p/4854719.html
首先是最近公共祖先的概念(什么是最近公共祖先?):
在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点。
换句话说,就是两个点在这棵树上距离最近的公共祖先节点。
所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。
有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢?
答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖先,而LCA还可以将自己视为祖先节点。
举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1。
这就是最近公共祖先的基本概念了,那么我们该如何去求这个最近公共祖先呢?
通常初学者都会想到最简单粗暴的一个办法:对于每个询问,遍历所有的点,时间复杂度为O(n*q),很明显,n和q一般不会很小。
常用的求LCA的算法有:Tarjan(离线)、倍增法(在线)
下面贴两种写法的代码,以HDU 2586 How far away ?为例:
题目大意:
给你一棵树n个节点,m次询问,每次询问树上节点u和v的最小距离。
Tarjan(时间复杂度O(n+Qlogn))
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=4e4+; struct node{
int to,w;
node(int to,int w):to(to),w(w){}
}; struct qnode{
int to,id;
qnode(int to,int id):to(to),id(id){}
}; vector<node>v[N];
vector<qnode>q[N];
bool vis[N]; //vis[i]表示点i是否被访问过
int res[N],root[N],dis[N]; //res记录答案 int find(int x){
return root[x]==x?x:root[x]=find(root[x]);
} void lca(int u){
vis[u]=true;
for(int i=;i<v[u].size();i++){
node t=v[u][i];
if(!vis[t.to]){
dis[t.to]=dis[u]+t.w;
lca(t.to);
root[t.to]=u;
}
}
for(int i=;i<q[u].size();i++){
qnode t=q[u][i];
if(vis[t.to]){
res[t.id]=dis[u]+dis[t.to]-*dis[find(t.to)];
}
}
} int main(){
int t;
scanf("%d",&t);
while(t--){
int n,m;
scanf("%d%d",&n,&m);
memset(vis,false,sizeof(vis));
memset(dis,,sizeof(dis));
for(int i=;i<=n;i++){
root[i]=i;
v[i].clear();
}
for(int i=;i<=m;i++){
q[i].clear();
}
for(int i=;i<=n-;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
v[a].push_back(node(b,c));
v[b].push_back(node(a,c));
}
for(int i=;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
q[a].push_back(qnode(b,i));
q[b].push_back(qnode(a,i));
}
lca(1);
for(int i=;i<=m;i++){
printf("%d\n",res[i]);
}
}
return ;
}
倍增法(时间复杂度O(nlogn+Qlogn))
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int N=1e5+; struct node{
int to,w;
node(int to,int w):to(to),w(w){}
};
vector<node>v[N]; int n,m;
int depth[N],fa[N][],dis[N];
bool vis[N]; void init(){
memset(depth,,sizeof(depth));
memset(fa,,sizeof(fa));
memset(dis,,sizeof(dis));
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++) v[i].clear();
} void dfs(int u){
vis[u]=true;
for(int i=;i<v[u].size();i++){
node t=v[u][i];
if(!vis[t.to]){
depth[t.to]=depth[u]+;
fa[t.to][]=u;
dis[t.to]=dis[u]+t.w;
dfs(t.to);
}
}
} //倍增,处理fa数组
void bz(){
for(int j=;j<=;j++){
for(int i=;i<=n;i++){
fa[i][j]=fa[fa[i][j-]][j-];
}
}
} int lca(int x,int y){
//保证深度大的点为x
if(depth[x]<depth[y])
swap(x,y);
int dc=depth[x]-depth[y];
for(int i=;i<;i++){
if(<<i&dc) //一个判断,模拟下就会清楚
x=fa[x][i];
}
if(x==y) return x; //如果深度一样,两个点相同,直接返回
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i]){ //跳2^i不一样,就跳,否则不跳
x=fa[x][i];
y=fa[y][i];
}
}
x=fa[x][];
return x;
} int main(){
int t;
scanf("%d",&t);
while(t--){
init();
scanf("%d%d",&n,&m);
for(int i=;i<=n-;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
v[a].push_back(node(b,c));
v[b].push_back(node(a,c));
}
dfs();
bz();
for(int i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",dis[x]+dis[y]-*dis[lca(x,y)]);
}
}
return ;
}
相关题目了解一下(转自这里):
hdu 2586 How far away ?
模板题,直接求LCA,可以在线,离线算法均可解,可以测试一下模板
poj 1986 Distance Queries
模板题,直接求LCA
hdu 2874 Connections between cities
模板题,不过不是树是森林,所以某些点不存在LCA,要做判断
zoj 3195 Design the city
任然算是模板题,上面的题要求两点间的最短距离,这里要求3点间的最短距离,其实就是两两之间求一次LCA并计算出距离,然后相加除以2即可
hdu 3078 Network
LCA + 修改点权值 + 排序:每个点有初始的权值,一边查询一边伴随着修改某些点的权值,查询是从a到b路径中第k大的权值是多少。不需要太多的技巧,修改操作就直接修改,查询操作先求LCA,然后从a走到b保存下所有的权值,排序,然后直接输出即可
poj 2763 Housewife Wind
LCA + 修改边权:一边查询两点间的距离,一边修改某些边权。对于修改了某些边的边权,就要从此开始遍历下面的子孙后代更改他们的dir值(点到根的距离)。也不需要太多技巧,直接按题意实现即可,不过时间比较糟糕,用线段树或树状数组可以对修改操作进行优化,时间提升很多
poj 3694 Network
连通分量 + LCA : 先缩点,再求LCA,并且不断更新,这题用了朴素方法来找LCA,并且在路径上做了一些操作
poj 3417 Network
LCA + Tree DP : 在运行Tarjan处理完所有的LCA询问后,进行一次树DP,树DP不难,但是要想到用树DP并和这题结合还是有点难度
poj 3728 The merchant
LCA + 并查集的变形,优化:好题,难题,思维和代码实现都很有难度,需要很好地理解Tarjan算法中并查集的本质然后灵活变形,需要记录很多信息(有点dp的感觉)
hdu 3830 Checkers
LCA + 二分:好题,有一定思维难度。先建立出二叉树模型,然后将要查询的两个点调整到深度一致,然后二分LCA所在的深度,然后检验