BZOJ4653:[NOI2016]区间(线段树)

Description

在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri−li,即等于它的右端点的值减去左端点的值。
求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1。

Input

第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n
接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。
N<=500000,M<=200000,0≤li≤ri≤10^9

Output

只有一行,包含一个正整数,即最小花费。

Sample Input

6 3
3 5
1 2
3 4
2 2
1 5
1 4

Sample Output

2

Solution

先把区间按长度sort一下,然后双指针扫一下就好了,因为左指针向右移动的时候,右指针单调不减,所以复杂度$nlogn$

Code

 #include<iostream>
#include<cstdio>
#include<algorithm>
#define N (1000009)
using namespace std; struct Node
{
int x,y,len;
bool operator < (const Node &a) const{return len<a.len;}
}L[N];
struct Sgt{int max,add;}Segt[N<<];
int n,m,b[N],num;
int getid(int x){return lower_bound(b+,b+num+,x)-b;} void Pushdown(int now)
{
Segt[now<<].max+=Segt[now].add;
Segt[now<<|].max+=Segt[now].add;
Segt[now<<].add+=Segt[now].add;
Segt[now<<|].add+=Segt[now].add;
Segt[now].add=;
} void Update(int now,int l,int r,int l1,int r1,int k)
{
if (l>r1 || r<l1) return;
if (l1<=l && r<=r1)
{
Segt[now].max+=k;
Segt[now].add+=k;
return;
}
Pushdown(now);
int mid=(l+r)>>;
Update(now<<,l,mid,l1,r1,k);
Update(now<<|,mid+,r,l1,r1,k);
Segt[now].max=max(Segt[now<<].max,Segt[now<<|].max);
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
{
scanf("%d%d",&L[i].x,&L[i].y); L[i].len=L[i].y-L[i].x;
b[i*-]=L[i].x; b[i*]=L[i].y;
}
sort(b+,b+*n+);
num=unique(b+,b+*n+)-b-;
sort(L+,L+n+); int pos=,cnt=,ans=2e9;
for (int i=; i<=n; ++i)
{
while (pos<n && Segt[].max<m)
{
++pos; ++cnt;
int x=getid(L[pos].x), y=getid(L[pos].y);
Update(,,num,x,y,);
}
if (Segt[].max>=m) ans=min(ans,L[pos].len-L[i].len);
int x=getid(L[i].x), y=getid(L[i].y);
Update(,,num,x,y,-);
}
printf("%d\n",ans==2e9?-:ans);
}
上一篇:CentOS 7搭建SVN服务器


下一篇:BZOJ4653: [Noi2016]区间(线段树 双指针)