#!/usr/bin/python
# -*- coding: UTF-8 -*-
from pyflink.table import EnvironmentSettings, TableEnvironment
# 1. 创建 TableEnvironment
env_settings = EnvironmentSettings.new_instance().in_streaming_mode().use_blink_planner().build()
table_env = TableEnvironment.create(env_settings)
# 2. 创建 source 表
table_env.execute_sql("""
CREATE TABLE datagen (
id INT,
name VARCHAR
) WITH (
'connector' = 'kafka',
'topic' = 'flink_test10',
'properties.bootstrap.servers' = '10.*.*.**:9092',
'properties.group.id' = 'test_Print',
'scan.startup.mode' = 'latest-offset',
'format' = 'json'
)
""")
# 3. 创建 sink 表
table_env.execute_sql("""
CREATE TABLE print (
id INT,
name VARCHAR
) WITH (
'connector' = 'print'
)
""")
# 4. 查询 source 表,同时执行计算
# 通过 Table API 创建一张表:
source_table = table_env.from_path("datagen")
# 或者通过 SQL 查询语句创建一张表:
#source_table = table_env.sql_query("SELECT * FROM datagen")
result_table = source_table.select(source_table.id, source_table.name)
print("result tabel:",type(result_table))
#print("r data: ",result_table.to_pandas())
# 5. 将计算结果写入给 sink 表
# 将 Table API 结果表数据写入 sink 表:
result_table.execute_insert("print").wait()
# 或者通过 SQL 查询语句来写入 sink 表:
#table_env.execute_sql("INSERT INTO print SELECT * FROM datagen").wait()
参考文档:
https://help.aliyun.com/document_detail/181568.html
https://blog.csdn.net/chenshijie2011/article/details/117399883
https://blog.csdn.net/chenshijie2011/article/details/117401621
https://www.cnblogs.com/maoxiangyi/p/13509782.html
https://www.cnblogs.com/Springmoon-venn/p/13726089.html
https://www.jianshu.com/p/295066a24092
https://blog.csdn.net/m0_37592814/article/details/108044830