在带有NVIDIA GPU的环境中使用tvm
环境配置
用一个小表格表示一下搭建环境吧。
环境项 | 参数 |
---|---|
CPU | Intel® Xeon® Gold 6142 CPU @ 2.60GHz |
GPU | NVIDIA A100-PCI |
OS | Ubuntu 18.04 |
使用官方提供的docker image
在clone过code后,code带有一些别人写好的docker images,直接用他们好了。
git clone --recursive https://github.com/shaojiewang/incubator-tvm tvm #仅第一次需要(自己fork的文件夹)
tvm/docker/build.sh Dockerfile.conda_cuda100
sudo tvm/docker/bash.sh tvm.conda_cuda100:latest
这个脚本干了如下几件事:
-
把当前目录挂载在/workspace目录下;
-
切换用户到root权限;
-
使用宿主机的网络;
第一次使用需要build image,以后就不用了。
编译安装tvm1
这里我就不记录了,还是主要靠tvm官网的方式:编译安装方式
# 编译动态库文件
sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev
mkdir build
cp cmake/config.cmake build # 随后在config.cmake里面修改选项,打开想要使用的内容。在此时发现tvm已经支持hip和rocm了
cd build
cmake ..
make -j4
./install_python.sh
使用一下子
在Python里面import 一下子,证明装上去了:
import tvm