描述
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any * grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-), (x, y+), and the both rows whose abscissas are x- and x+.
Now, how much qualities can you eat and then get ?
- 输入
-
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M,N<=500.
- 输出
-
For each case, you just output the MAX qualities you can eat and then get.
- 样例输入
-
- 样例输出
-
思路:
考虑对于某行某列元素,row[i][j]表示加上位置为i,j的土豆的质量的i行j列最大的和
列的最大值:row[i][j]=max(row[i][j-2]+row[i][j-3])+val
看图说话:
假设红色的格子为i行j列,那么它的前面有两种选择方案:
1、选择蓝色格子
2、选择黄色格子
那么该行最大的和是什么呢?
由于n列、n-1列具有状态无关性(n-1列的状态影响不了n列的状态),很显然等于max(row[i][n],row[i][n-1])
同理对于dp[i] (i行的最大值)
dp[i]=max(dp[i-2],dp[i-3])+max_row[i]
看图说话:
max土豆质量=max(dp[m],dp[m-1])
为了方便计算,我的代码把n,m扩大了2
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 506
int n,m;
int col[N][N];
int dp[N];
int main()
{
while(scanf("%d%d",&n,&m)==){
memset(col,,sizeof(col));
memset(dp,,sizeof(dp));
for(int i=;i<n+;i++){
for(int j=;j<m+;j++){
int x;
scanf("%d",&x);
col[i][j] = max(col[i][j-],col[i][j-])+x;
}
}
for(int i=;i<n+;i++){
dp[i]=max(dp[i-],dp[i-])+max(col[i][m+],col[i][m+]);
}
printf("%d\n",max(dp[n+],dp[n+]));
}
return ;
}