Term-Frequency word weighting scheme is one of most used in normalization of document-term matrices in text mining and information retrieval.
See wikipedia for details.
function Y = tfidf( X )
% FUNCTION computes TF-IDF weighted word histograms.
%
% Y = tfidf( X );
%
% INPUT :
% X - document-term matrix (documents in columns)
%
% OUTPUT :
% Y - TF-IDF weighted document-term matrix
%
% get term frequencies
X = tf(X);
% get inverse document frequencies
I = idf(X);
% apply weights for each document
for j=1:size(X, 2)
X(:, j) = X(:, j)*I(j);
end
Y = X;
function X = tf(X)
% SUBFUNCTION computes word frequencies
% for every word
for i=1:size(X, 1)
% get word i counts for all documents
x = X(i, :);
% sum all word i occurences in the whole collection
sumX = sum( x );
% compute frequency of the word i in the whole collection
if sumX ~= 0
X(i, :) = x / sum(x);
else
% avoiding NaNs : set zero to never appearing words
X(i, :) = 0;
end
end
function I = idf(X)
% SUBFUNCTION computes inverse document frequencies
% m - number of terms or words
% n - number of documents
[m, n]=size(X);
% allocate space for document idf's
I = zeros(n, 1);
% for every document
for j=1:n
% count non-zero frequency words
nz = nnz( X(:, j) );
% if not zero, assign a weight:
if nz
I(j) = log( m / nz );
end
endposted on 2012-08-11 15:30 Shicai Yang 阅读(...) 评论(...) 编辑 收藏
转载于:https://www.cnblogs.com/youth0826/archive/2012/08/11/2633688.html