Numpy实现train_test_split

from __future__ import division
from itertools import combinations_with_replacement
import numpy as np
import math
import sys

def shuffle_data(X, y, seed=None):
    """ Random shuffle of the samples in X and y """
    if seed:
        np.random.seed(seed)
    idx = np.arange(X.shape[0])
    np.random.shuffle(idx)
    return X[idx], y[idx]
def train_test_split(X, y, test_size=0.5, shuffle=True, seed=None):
    """ Split the data into train and test sets """
    if shuffle:
        X, y = shuffle_data(X, y, seed)
    # Split the training data from test data in the ratio specified in
    # test_size
    split_i = len(y) - int(len(y) // (1 / test_size))
    X_train, X_test = X[:split_i], X[split_i:]
    y_train, y_test = y[:split_i], y[split_i:]

    return X_train, X_test, y_train, y_test
上一篇:ESP8266 MQTT AT固件对接国外亚马逊云笔记


下一篇:ESP定律脱壳——NsPack3.x脱壳