经典k算法之识别数字:
这里不探讨怎么讲图片转换成为01代码的过程
建立在已经有32*32 = 1024的方形数据中
和一般的k近邻算法大致一样,但又几个地方需要注意
需要注意的是:
一是对于文件夹下文本文件的调用:
二是调用了新的包,即os库,用于实现listdir函数
import numpy as np
import operator
import os
def img2Vector(filename):
returnVect = np.zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def classify0(inx,dataSet,lables,k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inx,(dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis = 1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlable = lables[sortedDistIndicies[i]]
classCount[voteIlable] = classCount.get(voteIlable,0) + 1
sortedClassCount = sorted(classCount.items(),
key = operator.itemgetter(1),reverse = True)
return sortedClassCount[0][0]
def handwritingClassTest():
hwLables = []
trainingFileList = os.listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLables.append(classNumStr)
trainingMat[i,:] = img2Vector('trainingDigits/%s' % fileNameStr)
testFileList = os.listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2Vector('testDigits/%s' % fileNameStr)
classfierResult = classify0(vectorUnderTest,trainingMat,hwLables,3)
#print("分类结果为:%s 真实结果为:%d\n" %(classfierResult,classNumStr))
if(classfierResult != classNumStr):
errorCount+=1.0
print("\n总共错了%d次",errorCount)
print("\n错误率为 %.6f" % (errorCount/float(mTest)))