文章目录
容错
Barrier 机制:
- 出现一个 Barrier,在该 Barrier 之前出现的记录都属于该 Barrier 对应的 Snapshot,在该 Barrier 之后出现的记录属于下一个 Snapshot。
- 来自不同Snapshot多个Barrier可能同时出现在数据流中,也就是说同一个时刻可能并发生成多个Snapshot。
- 当一个中间(Intermediate)Operator接收到一个Barrier后,它会发送Barrier到属于该Barrier的Snapshot的数据流中,等到Sink Operator接收到该Barrier后会向Checkpoint Coordinator确认该Snapshot,直到所有的Sink Operator都确认了该Snapshot,才被认为完成了该Snapshot。
对齐:
当Operator接收到多个输入的数据流时,需要在Snapshot Barrier中对数据流进行排列对齐:
-
Operator从一个incoming Stream接收到Snapshot Barrier n,然后暂停处理,直到其它的incoming Stream的Barrier n(否则属于2个Snapshot的记录就混在一起了)到达该Operator
-
接收到Barrier n的Stream被临时搁置,来自这些Stream的记录不会被处理,而是被放在一个Buffer中。
-
一旦最后一个Stream接收到Barrier n,Operator会emit所有暂存在Buffer中的记录,然后向Checkpoint Coordinator发送Snapshot n。
-
继续处理来自多个Stream的记录
-
基于Stream Aligning操作能够实现Exactly Once语义,但是也会给流处理应用带来延迟,因为为了排列对齐Barrier,会暂时缓存一部分Stream的记录到Buffer中,尤其是在数据流并行度很高的场景下可能更加明显,通常以最迟对齐Barrier的一个Stream为处理Buffer中缓存记录的时刻点。在Flink中,提供了一个开关,选择是否使用Stream Aligning,如果关掉则Exactly Once会变成At least once。
CheckPoint:
Snapshot并不仅仅是对数据流做了一个状态的Checkpoint,它也包含了一个Operator内部所持有的状态,这样才能够在保证在流处理系统失败时能够正确地恢复数据流处理。状态包含两种:
- 系统状态:一个Operator进行计算处理的时候需要对数据进行缓冲,所以数据缓冲区的状态是与Operator相关联的。以窗口操作的缓冲区为例,Flink系统会收集或聚合记录数据并放到缓冲区中,直到该缓冲区中的数据被处理完成。
- 一种是用户自定义状态(状态可以通过转换函数进行创建和修改),它可以是函数中的Java对象这样的简单变量,也可以是与函数相关的Key/Value状态。
调度
在JobManager端,会接收到Client提交的JobGraph形式的Flink Job,JobManager会将一个JobGraph转换映射为一个ExecutionGraph,ExecutionGraph是JobGraph的并行表示,也就是实际JobManager调度一个Job在TaskManager上运行的逻辑视图。
物理上进行调度,基于资源的分配与使用的一个例子:
- 左上子图:有2个TaskManager,每个TaskManager有3个Task Slot
- 左下子图:一个Flink Job,逻辑上包含了1个data source、1个MapFunction、1个ReduceFunction,对应一个JobGraph
- 左下子图:用户提交的Flink Job对各个Operator进行的配置——data source的并行度设置为4,MapFunction的并行度也为4,ReduceFunction的并行度为3,在JobManager端对应于ExecutionGraph
- 右上子图:TaskManager 1上,有2个并行的ExecutionVertex组成的DAG图,它们各占用一个Task Slot
- 右下子图:TaskManager 2上,也有2个并行的ExecutionVertex组成的DAG图,它们也各占用一个Task Slot
在2个TaskManager上运行的4个Execution是并行执行的
迭代
机器学习和图计算应用,都会使用到迭代计算,Flink通过在迭代Operator中定义Step函数来实现迭代算法,这种迭代算法包括Iterate和Delta Iterate两种类型。
- Iterate
Iterate Operator是一种简单的迭代形式:每一轮迭代,Step函数的输入或者是输入的整个数据集,或者是上一轮迭代的结果,通过该轮迭代计算出下一轮计算所需要的输入(也称为Next Partial Solution),满足迭代的终止条件后,会输出最终迭代结果。
IterationState state = getInitialState();
while (!terminationCriterion()) {
state = step(state);
}
setFinalState(state);
- Delta Iterate
Delta Iterate Operator实现了增量迭代。
IterationState workset = getInitialState();
IterationState solution = getInitialSolution();
while (!terminationCriterion()) {
(delta, workset) = step(workset, solution);
solution.update(delta)
}
setFinalState(solution);
- 最小值传播:
背压
流处理系统中,当下游Operator处理速度跟不上的情况,如果下游Operator能够将自己处理状态传播给上游Operator,使得上游Operator处理速度慢下来就会缓解上述问题,比如通过告警的方式通知现有流处理系统存在的问题。
Flink Web界面上提供了对运行Job的Backpressure行为的监控,它通过使用Sampling线程对正在运行的Task进行堆栈跟踪采样来实现。
默认情况下,JobManager会每间隔50ms触发对一个Job的每个Task依次进行100次堆栈跟踪调用,过计算得到一个比值,例如,radio=0.01,表示100次中仅有1次方法调用阻塞。Flink目前定义了如下Backpressure状态:
OK: 0 <= Ratio <= 0.10
LOW: 0.10 < Ratio <= 0.5
HIGH: 0.5 < Ratio <= 1