https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v} 经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v} 保持在同一条直线上,但其长度或方向也许会改变。即
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v} 经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v} 保持在同一条直线上,但其长度或方向也许会改变。即
In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation
- T ( v ) = λ v , {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}
where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.
If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation
- A v = λ v . {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}
There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]
Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]
- A v = λ v {\displaystyle Av=\lambda v} ,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda } 为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v} 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
- A v = λ v {\displaystyle Av=\lambda v} ,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda } 为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v} 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。