优先级队列,是堆数据结构的典型应用。优先级队列的一个典型应用,就是排队任务的有限调度,当一个任务结束后,优先执行当前优先级最高的任务。队列一个任务是,调用INSERT方法。
- package lhz.algorithm.chapter.six;
- /**
- * “优先级队列”,《算法导论》6.5章节
- * 原文摘要:
- * A priority queue is a data structure for maintaining a set S of elements, each with an
- * associated value called a key. A max-priority queue supports the following operations.
- * • INSERT(S, x) inserts the element x into the set S. This operation could be written as S← S{x}.
- * • MAXIMUM(S) returns the element of S with the largest key.
- * • EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- * • INCREASE-KEY(S, x, k) increases the value of element x's key to the new value k,
- * which is assumed to be at least as large as x's current key value.
- * 堆的一种实际应用,可用于任务调度队列等。包含四个操作方法。
- * 原文地址: http://mushiqianmeng.blog.51cto.com/3970029/743611
- * @author lihzh(苦逼coder)
- */
- public class PriorityQueue {
- private final int DEFAULT_CAPACITY_VALUE = 16;
- //初始化一个长度为16的队列(可作为构造参数),此处选择16参考HashMap的初始化值
- private int capacity = DEFAULT_CAPACITY_VALUE;
- private int[] quene = new int[capacity];
- //堆大小
- private int heapSize = 0;
- /**
- * 返回当前最大值
- * @return
- */
- public int maximum() {
- return quene[0];
- }
- /**
- * 往优先级队列出,插入一个元素
- * 利用INCREASE-Key方法,从堆的最后增加元素
- * 伪代码:
- * MAX-HEAP-INSERT(A, key)
- * 1 heap-size[A] ← heap-size[A] + 1
- * 2 A[heap-size[A]] ← -∞
- * 3 HEAP-INCREASE-KEY(A, heap-size[A], key)
- * 时间复杂度:O(lg n)
- * @param value 待插入元素
- */
- public void insert(int value) {
- //注意堆容量和数组索引的错位 1
- quene[heapSize] = value;
- heapSize++;
- increaceKey(heapSize, value);
- }
- /**
- * 增加给定索引位元素的值,并重新构成MaxHeap。
- * 新值必须大于等于原有值
- * 伪代码:
- * HEAP-INCREASE-KEY(A, i, key)
- * 1 if key < A[i]
- * 2 then error "new key is smaller than current key"
- * 3 A[i] ← key
- * 4 while i > 1 and A[PARENT(i)] < A[i]
- * 5 do exchange A[i] ↔ A[PARENT(i)]
- * 6 i ← PARENT(i)
- * 时间复杂度:O(lg n)
- * @param index 索引位
- * @param newValue 新值
- */
- public void increaceKey (int heapIndex, int newValue) {
- if (newValue < quene[heapIndex-1]) {
- System.err.println("错误:新值小于原有值!");
- return;
- }
- quene[heapIndex-1] = newValue;
- int parentIndex = heapIndex / 2;
- while (parentIndex > 0 && quene[parentIndex-1] < newValue ) {
- int temp = quene[parentIndex-1];
- quene[parentIndex-1] = newValue;
- quene[heapIndex-1] = temp;
- heapIndex = parentIndex;
- parentIndex = parentIndex / 2;
- }
- }
- /**
- * 返回堆顶元素(最大值),并且将堆顶元素移除
- * 伪代码:
- * HEAP-EXTRACT-MAX(A)
- * 1 if heap-size[A] < 1
- * 2 then error "heap underflow"
- * 3 max ← A[1]
- * 4 A[1] ← A[heap-size[A]]
- * 5 heap-size[A] ← heap-size[A] - 1
- * 6 MAX-HEAPIFY(A, 1)
- * 7 return max
- * 时间复杂度:O(lg n),
- * @return
- */
- public int extractMax() {
- if (heapSize < 1) {
- System.err.println("堆中已经没有元素!");
- return -1;
- }
- int max = quene[0];
- quene[0] = quene[heapSize-1];
- heapSize--;
- maxHeapify(quene, 1);
- return max;
- }
- /**
- * 之前介绍的保持最大堆的算法
- * @param array
- * @param index
- */
- private void maxHeapify(int[] array, int index) {
- int l = index * 2;
- int r = l + 1;
- int largest;
- //如果左叶子节点索引小于堆大小,比较当前值和左叶子节点的值,取值大的索引值
- if (l <= heapSize && array[l-1] > array[index-1]) {
- largest = l;
- } else {
- largest = index;
- }
- //如果右叶子节点索引小于堆大小,比较右叶子节点和之前比较得出的较大值,取大的索引值
- if (r <= heapSize && array[r-1] > array[largest-1]) {
- largest = r;
- }
- //交换位置,并继续递归调用该方法调整位置。
- if (largest != index) {
- int temp = array[index-1];
- array[index-1] = array[largest-1];
- array[largest-1] = temp;
- maxHeapify(array, largest);
- }
- }
- }
简单的测试代码:
- public static void main(String[] args) {
- PriorityQueue q = new PriorityQueue();
- q.insert(2);
- q.insert(6);
- q.insert(3);
- q.insert(8);
- q.insert(7);
- q.insert(9);
- q.insert(1);
- q.insert(10);
- q.insert(9);
- System.out.println(q.extractMax());
- System.out.println(q.extractMax());
- q.insert(9);
- q.insert(1);
- q.insert(10);
- System.out.println(q.extractMax());
- System.out.println(q.extractMax());
- System.out.println(q.extractMax());
- System.out.println(q.extractMax());
- System.out.println(q.extractMax());
- System.out.println(q.extractMax());
- System.out.println(q.extractMax());
- }
本文转自mushiqianmeng 51CTO博客,原文链接:http://blog.51cto.com/mushiqianmeng/743611,如需转载请自行联系原作者