题目描述
面试题57 - II. 和为s的连续正数序列
难度简单37收藏分享切换为英文关注反馈
输入一个正整数 target
,输出所有和为 target
的连续正整数序列(至少含有两个数)。
序列内的数字由小到大排列,不同序列按照首个数字从小到大排列。
示例 1:
输入:target = 9
输出:[[2,3,4],[4,5]]
示例 2:
输入:target = 15
输出:[[1,2,3,4,5],[4,5,6],[7,8]]
限制:
1 <= target <= 10^5
方法一:
0ms 9.1MB都击败100%C++
class Solution {
public:
vector<vector<int>> findContinuousSequence(int target) {
vector<vector<int>>res;
int i=1;
while(target>0){
target-=i++;
if(target>0&&target%i==0){
vector<int>tmp;
for(int j=0;j<i;++j)tmp.emplace_back(target/i+j);
res.emplace_back(tmp);
}
}
reverse(res.begin(),res.end());
return res;
}
};
方法二:滑动窗口
什么是滑动窗口
滑动窗口可以看成数组中框起来的一个部分。在一些数组类题目中,我们可以用滑动窗口来观察可能的候选结果。当滑动窗口从数组的左边滑到了右边,我们就可以从所有的候选结果中找到最优的结果。
对于这道题来说,数组就是正整数序列\[ [1, 2, 3, \dots, n]\]。我们设滑动窗口的左边界为 ii,右边界为 jj,则滑动窗口框起来的是一个左闭右开区间 \[[i, j)\]。注意,为了编程的方便,滑动窗口一般表示成一个左闭右开区间。在一开始,\[i=1, j=1i=1,j=1\],滑动窗口位于序列的最左侧,窗口 大小为零。
滑动窗口的重要性质是:窗口的左边界和右边界永远只能向右移动,而不能向左移动。这是为了保证滑动窗口的时间复杂度是 \[O(n)\]。如果左右边界向左移动的话,这叫做“回溯”,算法的时间复杂度就可能不止 \[O(n)\]。
在这道题中,我们关注的是滑动窗口中所有数的和。当滑动窗口的右边界向右移动时,也就是j = j + 1
,窗口中多了一个数字 j,窗口的和也就要加上 j。当滑动窗口的左边界向右移动时,也就是i = i + 1
,窗口中少了一个数字i
,窗口的和也就要减去i
。滑动窗口只有 右边界向右移动(扩大窗口) 和 左边界向右移动(缩小窗口) 两个操作,所以实际上非常简单。
如何用滑动窗口解这道题
要用滑动窗口解这道题,我们要回答两个问题:
第一个问题,窗口何时扩大,何时缩小?
第二个问题,滑动窗口能找到全部的解吗?
对于第一个问题,回答非常简单:
当窗口的和小于target
的时候,窗口的和需要增加,所以要扩大窗口,窗口的右边界向右移动
当窗口的和大于target
的时候,窗口的和需要减少,所以要缩小窗口,窗口的左边界向右移动
当窗口的和恰好等于 target
的时候,我们需要记录此时的结果。设此时的窗口为\[ [i, j)\],那么我们已经找到了一个 $i \(开头的序列,也是唯一一个 ii 开头的序列,接下来需要找\)\(i+1\)$ 开头的序列,所以窗口的左边界要向右移动
对于第二个问题,我们可以稍微简单地证明一下:
我们一开始要找的是 1 开头的序列,只要窗口的和小于 target,窗口的右边界会一直向右移动。假设\[ 1+2+\dots+81+2+⋯+8 小于 target\],再加上一个 9 之后, 发现 \[1+2+\dots+8+91+2+⋯+8+9\] 又大于target
了。这说明 1 开头的序列找不到解。此时滑动窗口的最右元素是\[ 9\]。
接下来,我们需要找 2 开头的序列,我们发现,\[2 + \dots + 8 < 1 + 2 + \dots + 8 < \mathrm{target}2+⋯+8<1+2+⋯+8<target\]。这说明\[ 2\] 开头的序列至少要加到\[ 9\]。那么,我们只需要把原先 \[1~9\] 的滑动窗口的左边界向右移动,变成\[ 2~9 \]的滑动窗口,然后继续寻找。而右边界完全不需要向左移动。
以此类推,滑动窗口的左右边界都不需要向左移动,所以这道题用滑动窗口一定可以得到所有的解。时间复杂度是\[ O(n)\]。
注:这道题当前可以用等差数列的求和公式来计算滑动窗口的和。不过我这里没有使用求和公式,是为了展示更通用的解题思路。实际上,把题目中的正整数序列换成任意的递增整数序列,这个方法都可以解。
资料出自nettee
8ms 9.1MB
vector<vector<int>> findContinuousSequence(int target) {
int i = 1; // 滑动窗口的左边界
int j = 1; // 滑动窗口的右边界
int sum = 0; // 滑动窗口中数字的和
vector<vector<int>> res;
while (i <= target / 2) {
if (sum < target) {
// 右边界向右移动
sum += j;
j++;
} else if (sum > target) {
// 左边界向右移动
sum -= i;
i++;
} else {
// 记录结果
vector<int> arr;
for (int k = i; k < j; k++) {
arr.push_back(k);
}
res.push_back(arr);
// 左边界向右移动
sum -= i;
i++;
}
}
return res;
}