题意:
给定2个字符串,求最长公共子串的长度
思路:
把两个字符串相连得到S,则他们的公共子串就是部分S的后缀子串的前缀。
因为是相同的子串,所以sa必然是相邻的,因此扫一下height,若sa[i] 与 sa[i-1] 的后缀分别在分割符$前后,那就是两个字符串的后缀,求其最长公共前缀(即height[i])就是一个公共子串。
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <math.h> #include <set> using namespace std; #define rank Rank /* * 后缀数组 * DC3算法,复杂度O(n) * 所有的相关数组都要开三倍 *待排序数组长度为n,放在0~n-1中,在最后面补一个0 *da(str ,n+1,sa,rank,height, , );//注意是n+1; *例如: *n = 8; *num[] = { 1, 1, 2, 1, 1, 1, 1, 2, $ };注意num最后一位为0,其他大于0 *rank[] = { 4, 6, 8, 1, 2, 3, 5, 7, 0 };rank[0~n-1]为有效值,rank[n]必定为0无效值 *sa[] = { 8, 3, 4, 5, 0, 6, 1, 7, 2 };sa[1~n]为有效值,sa[0]必定为n是无效值 *height[]= { 0, 0, 3, 2, 3, 1, 2, 0, 1 };height[2~n]为有效值 * */ const int MAXN=301000; int rank[MAXN],height[MAXN]; #define F(x) ((x)/3+((x)%3==1?0:tb)) #define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2) int wa[MAXN*3],wb[MAXN*3],wv[MAXN*3],wss[MAXN*3]; int c0(int *r,int a,int b) { return r[a] == r[b] && r[a+1] == r[b+1] && r[a+2] == r[b+2]; } int c12(int k,int *r,int a,int b) { if(k == 2) return r[a] < r[b] || ( r[a] == r[b] && c12(1,r,a+1,b+1) ); else return r[a] < r[b] || ( r[a] == r[b] && wv[a+1] < wv[b+1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i = 0;i < n;i++)wv[i] = r[a[i]]; for(i = 0;i < m;i++)wss[i] = 0; for(i = 0;i < n;i++)wss[wv[i]]++; for(i = 1;i < m;i++)wss[i] += wss[i-1]; for(i = n-1;i >= 0;i--) b[--wss[wv[i]]] = a[i]; } void dc3(int *r,int *sa,int n,int m) { int i, j, *rn = r + n; int *san = sa + n, ta = 0, tb = (n+1)/3, tbc = 0, p; r[n] = r[n+1] = 0; for(i = 0;i < n;i++)if(i %3 != 0)wa[tbc++] = i; sort(r + 2, wa, wb, tbc, m); sort(r + 1, wb, wa, tbc, m); sort(r, wa, wb, tbc, m); for(p = 1, rn[F(wb[0])] = 0, i = 1;i < tbc;i++) rn[F(wb[i])] = c0(r, wb[i-1], wb[i]) ? p - 1 : p++; if(p < tbc)dc3(rn,san,tbc,p); else for(i = 0;i < tbc;i++)san[rn[i]] = i; for(i = 0;i < tbc;i++) if(san[i] < tb)wb[ta++] = san[i] * 3; if(n % 3 == 1)wb[ta++] = n - 1; sort(r, wb, wa, ta, m); for(i = 0;i < tbc;i++)wv[wb[i] = G(san[i])] = i; for(i = 0, j = 0, p = 0;i < ta && j < tbc;p++) sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++]; for(;i < ta;p++)sa[p] = wa[i++]; for(;j < tbc;p++)sa[p] = wb[j++]; } //str和sa也要三倍 void da(int str[],int sa[],int rank[],int height[],int n,int m) { for(int i = n;i < n*3;i++) str[i] = 0; dc3(str, sa, n+1, m); int i,j,k = 0; for(i = 0;i <= n;i++)rank[sa[i]] = i; for(i = 0;i < n; i++) { if(k) k--; j = sa[rank[i]-1]; while(str[i+k] == str[j+k]) k++; height[rank[i]] = k; } } char str[MAXN]; int r[MAXN]; int sa[MAXN]; int main() { gets(str); int len1 = strlen(str); str[len1] = ‘$‘; gets(str+len1+1); int len = strlen(str), n = len; for(int i = 0; i < n; i++)r[i] = str[i]; da(r, sa, rank, height, n, 200); int ans = 0; for(int i = 2; i <= n; i++) if((sa[i] < len1 && sa[i-1] > len1) || (sa[i]>len1 && sa[i-1] < len1)) ans = max(ans , height[i]); printf("%d\n", ans); return 0; } /* yeshowmuchiloveyoumydearmotherreallyicannotbelieveit yeaphowmuchiloveyoumydearmother abcd stedste aaaa aaaa aaaa aaaaa */