分组是SQL中常见的运算,但未必所有人都能深刻地理解它。
分组运算的实质是将一个集合按照某种规则拆分成若干个子集,也就是说,返回值应当是一个由集合构成的集合,但人们一般不太关心构成这个集合的成员集合(我们称为分组子集),而是对这些子集的聚合值更感兴趣,因此,分组运算常常伴随着对子集的进一步汇总计算。
SQL就是这么做的,在写有GROUP BY子句时,SELECT部分除了分组字段外,就只能写入聚合运算表达式了。当然还有个原因是SQL没有显式的集合数据类型,无法返回集合的集合这类数据,也只能强迫实施聚合运算了。
久而久之,人们会认为分组总是需要配合后续的聚合运算,而忘记了分组和聚合其实是两个独立的步骤。
但是,我们仍然有对这些分组子集而不是聚合值更感兴趣的时候。
比如,我们想找出公司里有哪些员工和其他员工会在同一天过生日,很简单的思路是将员工按生日分组,然后找出成员数大于1的分组子集,再合并起来。这时候我们就不是只对聚合值(分组子集的成员数)感兴趣,而是对分组子集本身更感兴趣。
这个运算用SQL写起来就会比较啰嗦,需要用子查询,并且要遍历两次原集合。
SELECT * FROM employee WHERE birthday IN
( SELECT birthday FROM employee GROUP BY birthday HAVING COUNT(*)>1 )
(题外话:这里假定birthday字段就是生日,其实我们日常意义的生日是没有年份的,而数据表中的birthday字段则会有,这时候还需要把birthday转换成月和日再做GROUP和WHERE,但对于集合化不彻底的SQL,涉及两个成员的IN运算很难写,上面的birthday要改写类似month(birthday()*100+day(birthday)的样子,拼成一个单独的表达式才能使用IN来判断,书写要繁琐很多。)
有集合化更彻底的语法时,就可以保持住分组子集。这就是需要离散性来支持了,分组子集仍然是原集合成员构成。这样,分组和聚合还原成两个步骤,上面的运算就可以很清晰地写出来:
employee.group(month(birthday),day(birthday)).select(~.len()>1).conj()
(在这个表达式中我们使用了前面讲遍历语法时的~符号表示当前成员,也就是遍历过程中的某个分组子集。)
按birthday的月/日分组,过滤出成员数大于1的分组子集,然后求并集。事实上在做过滤时仍然要再二次遍历数据,但只是计数,不需要像SQL那样做比较,性能要好很多。
退一步讲,就算我们只对聚合值感兴趣,我们也可能需要保持住这些分组子集以便反复利用,计算出多种聚合值,而不是完成一次聚合后就将其丢弃,下次再计算时又要重新分组。分组是个成本不低的运算,现在一般使用HASH方法实现分组,计算和比较HASH值都要比简单遍历复杂很多。有些优化不好的计算方案还会使用排序的方法实现分组(很多报表工具是这么做的),性能更会差出一个级别来。
比如我们计算每个部门的人数,再计算出10人以上部门的人员平均年龄。这在SQL中就要写成两句,因为后者需要一个HAVING条件:
SELECT department, COUNT(*) FROM employee GROUP BY department
SELECT department,AVERAGE(age) FROM employee GROUP BY department HAVING COUNT(*)>=10
这里GROUP动作就要被执行两遍。
而如果能够保持分组子集,则只要做一次group就可以了:
g=employee.group(department)
g.new(~.department,~.len())
g.select(~.len()>=10).new(~.department,~.avg(age))
还有的可能是,我们确实只对一个聚合值感兴趣,但这个聚合值很难计算,并不能简单地用SUM/COUNT计算出来的,需要编段程序才行,这时候也需要保留分组子集,而用SQL就很难实现这种运算了。我们会在后续文章中举例。
分组的结果是集合的集合,它仍然是个集合,那显然还可以进一步分组。
g1=employee.group(year(birthday)) //按出生年份分组
g2=g1.group(year(birthday)%10010) //将所有分组子集按年代分组
g3=g1.(~.group(month(birthday)) //将每个分组子集按出生月份分组
后两步运算都会得到集合的集合的集合,三层或更深的情况在现实业务中很少碰到,但可以用来体会集合的思维方式以及分组运算的本质。
我们知道,SQL针对GROUP后的结果集过滤专门设计了HAVING关键字,许多初学者对HAVING的理解和运用都不到位。其实,HAVING从概念上讲是多余的,它和WHERE并没有任何差别,只是因为SQL无法保持分组子集,要把分组和聚合写在一句话中,又要和WHERE区分,然后硬造出来的一个关键字。如果能够保持分组子集后实现分步计算,HAVING是没有必要的。
清华大学计算机硕士,著有《非线性报表模型原理》等,1989年,中国首个国际奥林匹克数学竞赛团体冠军成员,个人金牌;2000年,创立润乾公司;2004年,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准;2014年,经过7年开发,润乾软件发布不依赖关系代数模型的计算引擎——集算器,有效地提高了复杂结构化大数据计算的开发和运算效率;2015年,润乾软件被福布斯中文网站评为“2015福布斯中国非上市潜力企业100强”;2016年,荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业十大领军人物”;2017年, 自主创新研发新一代的数据仓库、云数据库等产品即将面世。
《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。
原文发布时间为:2017-09-23
本文作者:蒋步星
本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号