Machine Learning | 机器学习简介
Machine Learning | (1) Scikit-learn与特征工程
Machine Learning | (2) sklearn数据集与机器学习组成
Machine Learning | (3) Scikit-learn的分类器算法-k-近邻
Machine Learning | (4) Scikit-learn的分类器算法-逻辑回归
Machine Learning | (5) Scikit-learn的分类器算法-朴素贝叶斯
Machine Learning | (6) Scikit-learn的分类器算法-性能评估
Machine Learning | (7) Scikit-learn的分类器算法-决策树(Decision Tree)
Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)
Machine Learning | (9) 回归算法-线性回归
Machine Learning | (10) 回归算法-岭回归
回归算法之岭回归
具有L2正则化的线性最小二乘法。岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。当数据集中存在共线性的时候,岭回归就会有用。
sklearn.linear_model.Ridge
class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None)** """ :param alpha:float类型,正规化的程度 """
from sklearn.linear_model import Ridge clf = Ridge(alpha=1.0) clf.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1]))
方法
score(X, y, sample_weight=None)
clf.score()
属性
coef_
clf.coef_ array([ 0.34545455, 0.34545455])
intercept_
clf.intercept_ 0.13636...
案例分析
def linearmodel(): """ 线性回归对波士顿数据集处理 :return: None """ # 1、加载数据集 ld = load_boston() x_train,x_test,y_train,y_test = train_test_split(ld.data,ld.target,test_size=0.25) # 2、标准化处理 # 特征值处理 std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 目标值进行处理 std_y = StandardScaler() y_train = std_y.fit_transform(y_train) y_test = std_y.transform(y_test) # 3、估计器流程 # LinearRegression lr = LinearRegression() lr.fit(x_train,y_train) # print(lr.coef_) y_lr_predict = lr.predict(x_test) y_lr_predict = std_y.inverse_transform(y_lr_predict) print("Lr预测值:",y_lr_predict) # SGDRegressor sgd = SGDRegressor() sgd.fit(x_train,y_train) # print(sgd.coef_) y_sgd_predict = sgd.predict(x_test) y_sgd_predict = std_y.inverse_transform(y_sgd_predict) print("SGD预测值:",y_sgd_predict) # 带有正则化的岭回归 rd = Ridge(alpha=0.01) rd.fit(x_train,y_train) y_rd_predict = rd.predict(x_test) y_rd_predict = std_y.inverse_transform(y_rd_predict) print(rd.coef_) # 两种模型评估结果 print("lr的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict)) print("SGD的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_sgd_predict)) print("Ridge的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_rd_predict)) return None