\(QwQ\)
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 4000010
using namespace std;
const double Pi = acos(-1.0);
struct complex {
double x, y;
complex (double xx = 0, double yy = 0) {
x = xx, y = yy;
}
}a[MAXN], b[MAXN], c[MAXN];
complex operator + (complex a, complex b) {
return complex(a.x + b.x , a.y + b.y);
}
complex operator - (complex a, complex b) {
return complex(a.x - b.x , a.y - b.y);
}
complex operator * (complex a, complex b) {
return complex(a.x * b.x - a.y * b.y , a.x * b.y + a.y * b.x);
}
int N, M, l, limit = 1, r[MAXN];
void fast_fast_tle (complex *A, int type) {
for (int i = 0; i < limit; i++) {
if (i < r[i]) {
swap(A[i], A[r[i]]);
}
//effect as A[i] = A_original[r[i]];
}
for (int mid = 1; mid < limit; mid <<= 1) {
complex Wn (cos(Pi / mid) ,type * sin(Pi / mid)); //w (1, mid);
for (int R = mid << 1, j = 0; j < limit; j += R) {
//R -> len of sequence
//j -> last position
complex w(1, 0); //w (0, mid);
for (int k = 0; k < mid; k++, w = w * Wn) {
complex x = A[j + k], y = w * A[j + mid + k];
A[j + k] = x + y;
A[j + mid + k] = x - y;
}
//mid对应当前的中间值,对应下一次的n。
}
}
}
int main () {
cin >> N >> M;
for (int i = 0; i <= N; i++) cin >> a[i].x;
for (int i = 0; i <= M; i++) cin >> b[i].x;
while (limit <= N + M) limit <<= 1, l++;
for (int i = l - 1, p = 0; i >= 0; --i) {
int go_dis = 0;
while (go_dis < (1 << (l - i - 1))) {
p = p + 1;
r[p] = r[p - (1 << (l - i - 1))] + (1 << i);
++go_dis;
}
}
fast_fast_tle (a, 1);
fast_fast_tle (b, 1);
for (int i = 0; i < limit; i++) {
c[i] = a[i] * b[i];
}
fast_fast_tle(c, -1);
for (int i = 0; i <= N + M; i++) {
printf("%d ", (int)(c[i].x / limit + 0.5));
}
return 0;
}
附上\(nlogn\)高精乘法的板子
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 4000010
using namespace std;
struct complex {
double x, y;
complex (double xx = 0, double yy = 0) {
x = xx, y = yy;
}
}a[N], b[N], c[N];
complex operator + (complex lhs, complex rhs) {
return complex (lhs.x + rhs.x, lhs.y + rhs.y);
}
complex operator - (complex lhs, complex rhs) {
return complex (lhs.x - rhs.x, lhs.y - rhs.y);
}
complex operator * (complex lhs, complex rhs) {
complex t;
t.x = lhs.x * rhs.x - lhs.y * rhs.y;
t.y = lhs.x * rhs.y + rhs.x * lhs.y;
return t;
}
int read () {
int s = 0, w = 1, ch = getchar ();
while ('9' < ch || ch < '0') {
if (ch == '-') w = -1;
ch = getchar ();
}
while ('0' <= ch && ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * w;
}
int r[N];
int n, m, l, lim = 1;
const double pi = acos (-1);
void fast_fast_tle (complex *A, int type) {
register int i, k, p, len, mid;
register complex Wn, w, x, y;
for (i = 0; i < lim; ++i) if (i < r[i]) swap (A[i], A[r[i]]);
for (mid = 1; mid < lim; mid *= 2) {
Wn = complex (cos (pi / mid), type * sin (pi / mid)); // w (1, mid);
for (len = mid * 2, p = 0; p < lim; p += len) {
w = complex (1, 0);
for (k = 0; k < mid; ++k, w = w * Wn) {// w (k, mid);
x = A[p + k], y = w * A[p + k + mid];
A[p + k] = x + y;
A[p + k + mid] = x - y;
}
}
}
}
int main () {
n = read (), m = read ();
register int i, p, go_dis;
for (i = 0; i <= n; ++i) a[i].x = read ();
for (i = 0; i <= m; ++i) b[i].x = read ();
while (lim <= n + m) lim <<= 1, ++l;
for (i = l - 1, p = 0; i >= 0; --i) {
go_dis = 0;
while (go_dis < (1 << (l - i - 1))) {
p = p + 1;
r[p] = r[p - (1 << (l - i - 1))] + (1 << i);
++go_dis;
}
}
fast_fast_tle (a, +1);
fast_fast_tle (b, +1);
for (i = 0; i < lim; ++i) c[i] = a[i] * b[i];
fast_fast_tle (c, -1);
for (i = 0; i <= n + m; ++i) printf ("%d ", (int) (c[i].x / lim + 0.5));
}