VGG网络及Pytorch实现

2014年由牛津大学研究组Visual Geometry Group提出,论文地址Very Deep Convolutional Networks for Large-Scale Image Recognition

VGG网络及Pytorch实现

图3 VGG网络结构

文章亮点:通过堆叠多个3×3卷积核来代替大尺度卷积核(减少所需参数)。

论文中提到:堆叠2个3×3的卷积核代替5×5的卷积核,堆叠3个3×3的卷积核代替7×7的卷积核,它们拥有相同的感受野。

基本概念拓展:CNN感受野

在CNN中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野(receptive field)。

F ( i ) = ( F ( i + 1 ) − 1 ) × S + k s F(i)=(F(i+1)-1)\times S+ks F(i)=(F(i+1)−1)×S+ks

例如, F = 1 F=1 F=1,经过3个3×3的卷积核后感受野为7×7

C o n v 3 × 3 ( 3 ) : F = ( 1 − 1 ) × 1 + 3 = 3 Conv3\times 3(3):F=(1-1)\times 1+3=3 Conv3×3(3):F=(1−1)×1+3=3
C o n v 3 × 3 ( 2 ) : F = ( 3 − 1 ) × 1 + 3 = 5 Conv3\times 3(2):F=(3-1)\times 1+3=5 Conv3×3(2):F=(3−1)×1+3=5
C o n v 3 × 3 ( 1 ) : F = ( 5 − 1 ) × 1 + 3 = 7 Conv3\times 3(1):F=(5-1)\times 1+3=7 Conv3×3(1):F=(5−1)×1+3=7

pytorch实现

class VGG(nn.Module):

    def __init__(self, features, num_classes=1000, init_weights=True):
        super(VGG, self).__init__()
        self.features = features
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)


cfgs = {
    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs):
    if pretrained:
        kwargs['init_weights'] = False
    model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch],
                                              progress=progress)
        model.load_state_dict(state_dict)
    return model


def vgg11(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs)


def vgg11_bn(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs)


def vgg13(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs)


def vgg13_bn(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs)


def vgg16(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)


def vgg16_bn(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs)


def vgg19(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs)


def vgg19_bn(pretrained=False, progress=True, **kwargs):
    return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs)
上一篇:python模块之subprocess模块级方法的使用


下一篇:*args,**kwargs 的用法