POJ-2417-Discrete Logging(BSGS)

Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
   B

(P-1)

 == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

   B

(-m)

 == B

(P-1-m)

(mod P) .


 

题解

这道题是裸的BSGS,具体内容可以看hzw的博客—传送门

 #include<algorithm>
#include<map>
#include<cstdio>
#include<cstring>
#include<cmath>
#define ll long long
using namespace std;
ll p,b,n,s,x,y,m,k;
int exgcd(ll a,ll b){
if (!b){
x=; y=;
return a;
}
int d=exgcd(b,a%b);
ll t=x; x=y; y=t-(a/b)*y;
return d;
}
map<int,int> h;
int main(){
while (~scanf("%lld%lld%lld",&p,&b,&n)){
h.clear();
ll t=(ll)sqrt(p);
s=; h[]=t;
for (int i=;i<=t-;i++){
s=s*b%p;
if (!h[s]) h[s]=i;
}
s=s*b%p;
ll l=1e10,ans=n;
exgcd(s,p);
x=(x+p)%p;
for (int i=;i<=t;i++){
if (h[ans]){
if (h[ans]==t) h[ans]=;
l=i*t+h[ans];
break;
}
ans=ans*x%p;
}
if (l!=1e10) printf("%lld\n",l);
else puts("no solution");
}
return ;
}
上一篇:用C++11的std::async代替线程的创建


下一篇:iOS开发之窥探UICollectionViewController(三) --使用UICollectionView自定义瀑布流