spark基本操作 java 版

1.map算子

private static void map() {  
        //创建SparkConf  
        SparkConf conf = new SparkConf()  
                .setAppName("map")  
                .setMaster("local");  

        //创建JavasparkContext  
        JavaSparkContext sc = new JavaSparkContext(conf);  

        //构造集合  
        List<Integer> numbers = Arrays.asList(1,2,3,4,5);  

        //并行化集合,创建初始RDD  
        JavaRDD<Integer> numberRDD = sc.parallelize(numbers);  

        //使用map算子,将集合中的每个元素都乘以2  
        JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {  
            @Override  
            public Integer call(Integer v1) throws Exception {  
                return v1 * 2;  
            }  
        });  
        //打印新的RDD  
        multipleNumberRDD.foreach(new VoidFunction<Integer>() {  
            @Override  
            public void call(Integer t) throws Exception {  
                System.out.println(t);  
            }  
        });  
        //关闭JavasparkContext  
        sc.close();  
    }

2.filter算子

private static void filter() {  
        //创建SparkConf  
        SparkConf conf = new SparkConf()  
                    .setAppName("filter")  
                    .setMaster("local");  

        //创建JavaSparkContext   
        JavaSparkContext sc = new JavaSparkContext(conf);  

        //模拟集合  
        List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8,9,10);  

        //并行化集合,创建初始RDD  
        JavaRDD<Integer> numberRDD = sc.parallelize(numbers);  

        //对集合使用filter算子,过滤出集合中的偶数  
        JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() {  
            @Override  
            public Boolean call(Integer v1) throws Exception {  
                return v1%2==0;  
            }  
        });  
        evenNumberRDD.foreach(new VoidFunction<Integer>() {  
            @Override  
            public void call(Integer t) throws Exception {  
                System.out.println(t);  
            }  

        });  
        sc.close();  
    }

3.flatMap算子

Spark 中 map函数会对每一条输入进行指定的操作,然后为每一条输入返回一个对象;

而flatMap函数则是两个操作的集合——正是“先映射后扁平化”:

操作1:同map函数一样:对每一条输入进行指定的操作,然后为每一条输入返回一个对象

操作2:最后将所有对象合并为一个对象

private static void flatMap() {  
        SparkConf conf = new SparkConf()  
            .setAppName("flatMap")  
            .setMaster("local");  

        JavaSparkContext sc = new JavaSparkContext(conf);  

        List<String> lineList = Arrays.asList("hello you","hello me","hello world");  

        JavaRDD<String> lines = sc.parallelize(lineList);  

        //对RDD执行flatMap算子,将每一行文本,拆分为多个单词  
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {  
            //在这里,传入第一行,hello,you  
            //返回的是一个Iterable<String>(hello,you)  
            @Override  
            public Iterable<String> call(String t) throws Exception {  
                return Arrays.asList(t.split(" "));  
            }  
        });  

        words.foreach(new VoidFunction<String>() {  
            @Override  
            public void call(String t) throws Exception {  
                System.out.println(t);  
            }  
        });  
        sc.close();  
    }

4.groupByKey算子

private static void groupByKey() {  
        SparkConf conf = new SparkConf()  
                .setAppName("groupByKey")  
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);  
        List<Tuple2<String, Integer>> scoreList = Arrays.asList(  
                new Tuple2<String, Integer>("class1", 80),  
                new Tuple2<String, Integer>("class2", 90),  
                new Tuple2<String, Integer>("class1", 97),  
                new Tuple2<String, Integer>("class2", 89));  

        JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);  
        //针对scoresRDD,执行groupByKey算子,对每个班级的成绩进行分组  
        //相当于是,一个key join上的所有value,都放到一个Iterable里面去了  
        JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();  
        groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {  

            @Override  
            public void call(Tuple2<String, Iterable<Integer>> t)  
                    throws Exception {  
                System.out.println("class:" + t._1);  
                Iterator<Integer> ite = t._2.iterator();  
                while(ite.hasNext()) {  
                    System.out.println(ite.next());  
                }  
            }  
        });  
    }

5.reduceByKey算子

private static void reduceByKey() {  
        SparkConf conf = new SparkConf()  
                .setAppName("reduceByKey")  
                .setMaster("local");  

        JavaSparkContext sc = new JavaSparkContext(conf);  
        List<Tuple2<String, Integer>> scoreList = Arrays.asList(  
                new Tuple2<String, Integer>("class1", 80),  
                new Tuple2<String, Integer>("class2", 90),  
                new Tuple2<String, Integer>("class1", 97),  
                new Tuple2<String, Integer>("class2", 89));  

        JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);  

        //reduceByKey算法返回的RDD,还是JavaPairRDD<key,value>  
        JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {  
            @Override  
            public Integer call(Integer v1, Integer v2) throws Exception {  
                return v1 + v2;  
            }  
        });  

        totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {  
            @Override  
            public void call(Tuple2<String, Integer> t) throws Exception {  
                System.out.println(t._1 + ":" + t._2);  

            }  
        });  
        sc.close();  
    }

6.sortByKey算子

private static void sortByKey() {  
        SparkConf conf = new SparkConf()  
                .setAppName("sortByKey")  
                .setMaster("local");  

        JavaSparkContext sc = new JavaSparkContext(conf);  

        List<Tuple2<Integer, String>> scoreList = Arrays.asList(  
                new Tuple2<Integer, String>(78, "marry"),  
                new Tuple2<Integer, String>(89, "tom"),  
                new Tuple2<Integer, String>(72, "jack"),  
                new Tuple2<Integer, String>(86, "leo"));  

        JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);  

        JavaPairRDD<Integer, String> sortedScores = scores.sortByKey();  
        sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {  
            @Override  
            public void call(Tuple2<Integer, String> t) throws Exception {  
                System.out.println(t._1 + ":" + t._2);  
            }  
        });  
        sc.close();  
    }

7.join算子
join算子用于关联两个RDD,join以后,会根据key进行join,并返回JavaPairRDD。JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key类型,因为通过key进行join的。第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型

private static void join() {  
        SparkConf conf = new SparkConf()  
                .setAppName("join")  
                .setMaster("local");  

        JavaSparkContext sc = new JavaSparkContext(conf);  

        List<Tuple2<Integer, String>> studentList = Arrays.asList(  
                new Tuple2<Integer, String>(1, "tom"),  
                new Tuple2<Integer, String>(2, "jack"),  
                new Tuple2<Integer, String>(3, "marry"),  
                new Tuple2<Integer, String>(4, "leo"));  

        List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(  
                new Tuple2<Integer, Integer>(1, 78),  
                new Tuple2<Integer, Integer>(2, 87),  
                new Tuple2<Integer, Integer>(3, 89),  
                new Tuple2<Integer, Integer>(4, 98));  

        //并行化两个RDD  
        JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);;  
        JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);  

        //使用join算子关联两个RDD  
        //join以后,会根据key进行join,并返回JavaPairRDD  
        //JavaPairRDD的第一个泛型类型,之前两个JavaPairRDD的key类型,因为通过key进行join的  
        //第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型  
        JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);  

        //打印  
        studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {  
            @Override  
            public void call(Tuple2<Integer, Tuple2<String, Integer>> t)  
                    throws Exception {  
                System.out.println("student id:" + t._1);  
                System.out.println("student name:" + t._2._1);  
                System.out.println("student score:" + t._2._2);  
                System.out.println("==========================");  
            }  
        });  
        sc.close();  
    }

更深的方法参见:
http://blog.csdn.net/liulingyuan6/article/details/53397780
http://blog.csdn.net/liulingyuan6/article/details/53410832
https://www.2cto.com/net/201608/543044.html

转自: http://blog.csdn.net/sunhaoning/article/details/70505718


本文转自whk66668888 51CTO博客,原文链接:http://blog.51cto.com/12597095/2063767


上一篇:SQL Server中常用全局变量介绍


下一篇:sccm 2007 r2 step by step 之十四 操作系统分发part3