以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的
决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序
那么如何来定义有序或无序?
对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度
对于回归问题,我们用方差Variance来表示无序程度,方差越大,说明数据间差异越大
information gain
用于表示,由父节点划分后得到子节点,所带来的impurity的下降,即有序性的增益
MLib决策树的例子
下面直接看个regression的例子,分类的case,差不多,
import org.apache.spark.mllib.tree.DecisionTree import org.apache.spark.mllib.util.MLUtils // Load and parse the data file. // Cache the data since we will use it again to compute training error. val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").cache() // Train a DecisionTree model. // Empty categoricalFeaturesInfo indicates all features are continuous. val categoricalFeaturesInfo = Map[Int, Int]() val impurity = "variance" val maxDepth = 5 val maxBins = 100 val model = DecisionTree.trainRegressor(data, categoricalFeaturesInfo, impurity, maxDepth, maxBins) // Evaluate model on training instances and compute training error val labelsAndPredictions = data.map { point => val prediction = model.predict(point.features) (point.label, prediction) } val trainMSE = labelsAndPredictions.map{ case(v, p) => math.pow((v - p), 2)}.mean() println("Training Mean Squared Error = " + trainMSE) println("Learned regression tree model:\n" + model)
还是比较简单的,
由于是回归,所以impurity的定义为variance
maxDepth,最大树深,设为5
maxBins,最大的划分数
先理解什么是bin,决策树的算法就是对feature的取值不断的进行划分
对于离散的feature,比较简单,如果有m个值,最多 个划分,如果值是有序的,那么就最多m-1个划分
比如年龄feature,有老,中,少3个值,如果无序有个,即3种划分,老|中,少;老,中|少;老,少|中
但如果是有序的,即按老,中,少的序,那么只有m-1个,即2种划分,老|中,少;老,中|少
对于连续的feature,其实就是进行范围划分,而划分的点就是split,划分出的区间就是bin
对于连续feature,理论上划分点是无数的,但是出于效率我们总要选取合适的划分点
有个比较常用的方法是取出训练集中该feature出现过的值作为划分点,
但对于分布式数据,取出所有的值进行排序也比较费资源,所以可以采取sample的方式
源码分析
首先调用,DecisionTree.trainRegressor,类似调用静态函数(object DecisionTree)
org.apache.spark.mllib.tree.DecisionTree.scala
/** * Method to train a decision tree model for regression. * * @param input Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]]. * Labels are real numbers. * @param categoricalFeaturesInfo Map storing arity of categorical features. * E.g., an entry (n -> k) indicates that feature n is categorical * with k categories indexed from 0: {0, 1, ..., k-1}. * @param impurity Criterion used for information gain calculation. * Supported values: "variance". * @param maxDepth Maximum depth of the tree. * E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. * (suggested value: 5) * @param maxBins maximum number of bins used for splitting features * (suggested value: 32) * @return DecisionTreeModel that can be used for prediction */ def trainRegressor( input: RDD[LabeledPoint], categoricalFeaturesInfo: Map[Int, Int], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModel = { val impurityType = Impurities.fromString(impurity) train(input, Regression, impurityType, maxDepth, 0, maxBins, Sort, categoricalFeaturesInfo) }
调用静态函数train
def train( input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int, numClassesForClassification: Int, maxBins: Int, quantileCalculationStrategy: QuantileStrategy, categoricalFeaturesInfo: Map[Int,Int]): DecisionTreeModel = { val strategy = new Strategy(algo, impurity, maxDepth, numClassesForClassification, maxBins, quantileCalculationStrategy, categoricalFeaturesInfo) new DecisionTree(strategy).train(input) }
可以看到将所有参数封装到Strategy类,然后初始化DecisionTree类对象,继续调用成员函数train
/** * :: Experimental :: * A class which implements a decision tree learning algorithm for classification and regression. * It supports both continuous and categorical features. * @param strategy The configuration parameters for the tree algorithm which specify the type * of algorithm (classification, regression, etc.), feature type (continuous, * categorical), depth of the tree, quantile calculation strategy, etc. */ @Experimental class DecisionTree (private val strategy: Strategy) extends Serializable with Logging { strategy.assertValid() /** * Method to train a decision tree model over an RDD * @param input Training data: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]] * @return DecisionTreeModel that can be used for prediction */ def train(input: RDD[LabeledPoint]): DecisionTreeModel = { // Note: random seed will not be used since numTrees = 1. val rf = new RandomForest(strategy, numTrees = 1, featureSubsetStrategy = "all", seed = 0) val rfModel = rf.train(input) rfModel.trees(0) } }
可以看到,这里DecisionTree的设计是基于RandomForest的特例,即单颗树的RandomForest
所以调用RandomForest.train(),最终因为只有一棵树,所以取trees(0)
org.apache.spark.mllib.tree.RandomForest.scala
重点看下,RandomForest里面的train做了什么?
/** * Method to train a decision tree model over an RDD * @param input Training data: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]] * @return RandomForestModel that can be used for prediction */ def train(input: RDD[LabeledPoint]): RandomForestModel = { //1. metadata val retaggedInput = input.retag(classOf[LabeledPoint]) val metadata = DecisionTreeMetadata.buildMetadata(retaggedInput, strategy, numTrees, featureSubsetStrategy) // 2. Find the splits and the corresponding bins (interval between the splits) using a sample // of the input data. val (splits, bins) = DecisionTree.findSplitsBins(retaggedInput, metadata) // 3. Bin feature values (TreePoint representation). // Cache input RDD for speedup during multiple passes. val treeInput = TreePoint.convertToTreeRDD(retaggedInput, bins, metadata) val baggedInput = if (numTrees > 1) { BaggedPoint.convertToBaggedRDD(treeInput, numTrees, seed) } else { BaggedPoint.convertToBaggedRDDWithoutSampling(treeInput) }.persist(StorageLevel.MEMORY_AND_DISK) // set maxDepth and compute memory usage // depth of the decision tree // Max memory usage for aggregates // TODO: Calculate memory usage more precisely. //........ /* * The main idea here is to perform group-wise training of the decision tree nodes thus * reducing the passes over the data from (# nodes) to (# nodes / maxNumberOfNodesPerGroup). * Each data sample is handled by a particular node (or it reaches a leaf and is not used * in lower levels). */ // FIFO queue of nodes to train: (treeIndex, node) val nodeQueue = new mutable.Queue[(Int, Node)]() val rng = new scala.util.Random() rng.setSeed(seed) // Allocate and queue root nodes. val topNodes: Array[Node] = Array.fill[Node](numTrees)(Node.emptyNode(nodeIndex = 1)) Range(0, numTrees).foreach(treeIndex => nodeQueue.enqueue((treeIndex, topNodes(treeIndex)))) while (nodeQueue.nonEmpty) { // Collect some nodes to split, and choose features for each node (if subsampling). // Each group of nodes may come from one or multiple trees, and at multiple levels. val (nodesForGroup, treeToNodeToIndexInfo) = RandomForest.selectNodesToSplit(nodeQueue, maxMemoryUsage, metadata, rng) // 对decision tree没有意义,nodeQueue只有一个node,不需要选 // 4. Choose node splits, and enqueue new nodes as needed. DecisionTree.findBestSplits(baggedInput, metadata, topNodes, nodesForGroup, treeToNodeToIndexInfo, splits, bins, nodeQueue, timer) } val trees = topNodes.map(topNode => new DecisionTreeModel(topNode, strategy.algo)) RandomForestModel.build(trees) }
1. DecisionTreeMetadata.buildMetadata
org.apache.spark.mllib.tree.impl.DecisionTreeMetadata.scala
这里生成一些后面需要用到的metadata
最关键的是计算每个feature的bins和splits的数目,
计算bins的数目
//bins数目最大不能超过训练集中样本的size val maxPossibleBins = math.min(strategy.maxBins, numExamples).toInt //设置默认值 val numBins = Array.fill[Int](numFeatures)(maxPossibleBins) if (numClasses > 2) { // Multiclass classification val maxCategoriesForUnorderedFeature = ((math.log(maxPossibleBins / 2 + 1) / math.log(2.0)) + 1).floor.toInt strategy.categoricalFeaturesInfo.foreach { case (featureIndex, numCategories) => // Decide if some categorical features should be treated as unordered features, // which require 2 * ((1 << numCategories - 1) - 1) bins. // We do this check with log values to prevent overflows in case numCategories is large. // The next check is equivalent to: 2 * ((1 << numCategories - 1) - 1) <= maxBins if (numCategories <= maxCategoriesForUnorderedFeature) { unorderedFeatures.add(featureIndex) numBins(featureIndex) = numUnorderedBins(numCategories) } else { numBins(featureIndex) = numCategories } } } else { // Binary classification or regression strategy.categoricalFeaturesInfo.foreach { case (featureIndex, numCategories) => numBins(featureIndex) = numCategories } }
其他case,bins数目等于feature的numCategories
对于unordered情况,比较特殊,
/** * Given the arity of a categorical feature (arity = number of categories), * return the number of bins for the feature if it is to be treated as an unordered feature. * There is 1 split for every partitioning of categories into 2 disjoint, non-empty sets; * there are math.pow(2, arity - 1) - 1 such splits. * Each split has 2 corresponding bins. */ def numUnorderedBins(arity: Int): Int = 2 * ((1 << arity - 1) - 1)
根据bins数目,计算splits
/** * Number of splits for the given feature. * For unordered features, there are 2 bins per split. * For ordered features, there is 1 more bin than split. */ def numSplits(featureIndex: Int): Int = if (isUnordered(featureIndex)) { numBins(featureIndex) >> 1 } else { numBins(featureIndex) - 1 }
2. DecisionTree.findSplitsBins
首先找出每个feature上可能出现的splits和相应的bins,这是后续算法的基础
这里的注释解释了上面如何计算splits和bins数目的算法
a,对于连续数据,对于一个feature,splits = numBins - 1;上面也说了对于连续值,其实splits可以无限的,如何找到numBins - 1个splits,很简单,这里用sample
b,对于离散数据,两个case
b.1, 无序的feature,用于low-arity(参数较少)的multiclass分类,这种case下划分的可能性比较多,,所以用subsets of categories来作为划分
b.2, 有序的feature,用于regression,二元分类,或high-arity的多元分类,这种case下划分的可能比较少,m-1,所以用每个category作为划分
/** * Returns splits and bins for decision tree calculation. * Continuous and categorical features are handled differently. * * Continuous features: * For each feature, there are numBins - 1 possible splits representing the possible binary * decisions at each node in the tree. * This finds locations (feature values) for splits using a subsample of the data. * * Categorical features: * For each feature, there is 1 bin per split. * Splits and bins are handled in 2 ways: * (a) "unordered features" * For multiclass classification with a low-arity feature * (i.e., if isMulticlass && isSpaceSufficientForAllCategoricalSplits), * the feature is split based on subsets of categories. * (b) "ordered features" * For regression and binary classification, * and for multiclass classification with a high-arity feature, * there is one bin per category. * * @param input Training data: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]] * @param metadata Learning and dataset metadata * @return A tuple of (splits, bins). * Splits is an Array of [[org.apache.spark.mllib.tree.model.Split]] * of size (numFeatures, numSplits). * Bins is an Array of [[org.apache.spark.mllib.tree.model.Bin]] * of size (numFeatures, numBins). */ protected[tree] def findSplitsBins( input: RDD[LabeledPoint], metadata: DecisionTreeMetadata): (Array[Array[Split]], Array[Array[Bin]]) = { val numFeatures = metadata.numFeatures // Sample the input only if there are continuous features. val hasContinuousFeatures = Range(0, numFeatures).exists(metadata.isContinuous) val sampledInput = if (hasContinuousFeatures) { // 对于连续特征,取值会比较多,需要做抽样 // Calculate the number of samples for approximate quantile calculation. val requiredSamples = math.max(metadata.maxBins * metadata.maxBins, 10000) // 抽样数要远大于桶数 val fraction = if (requiredSamples < metadata.numExamples) { // 设置抽样比例 requiredSamples.toDouble / metadata.numExamples } else { 1.0 } input.sample(withReplacement = false, fraction, new XORShiftRandom().nextInt()).collect() } else { new Array[LabeledPoint](0) } metadata.quantileStrategy match { case Sort => val splits = new Array[Array[Split]](numFeatures) // 初始化splits和bins val bins = new Array[Array[Bin]](numFeatures) // Find all splits. // Iterate over all features. var featureIndex = 0 while (featureIndex < numFeatures) { // 遍历所有的feature val numSplits = metadata.numSplits(featureIndex) // 取出前面算出的splits和bins的数目 val numBins = metadata.numBins(featureIndex) if (metadata.isContinuous(featureIndex)) { // 对于连续的feature val numSamples = sampledInput.length splits(featureIndex) = new Array[Split](numSplits) bins(featureIndex) = new Array[Bin](numBins) val featureSamples = sampledInput.map(lp => lp.features(featureIndex)).sorted // 从sampledInput里面取出该feature的所有取值,排序 val stride: Double = numSamples.toDouble / metadata.numBins(featureIndex) // 取样数/桶数,决定split(划分)的步长 logDebug("stride = " + stride) for (splitIndex <- 0 until numSplits) { // 开始划分 val sampleIndex = splitIndex * stride.toInt // 划分数×步长,得到划分所用的sample的index // Set threshold halfway in between 2 samples. val threshold = (featureSamples(sampleIndex) + featureSamples(sampleIndex + 1)) / 2.0 // 划分点选取在前后两个sample的均值 splits(featureIndex)(splitIndex) = new Split(featureIndex, threshold, Continuous, List()) // 创建Split对象 } bins(featureIndex)(0) = new Bin(new DummyLowSplit(featureIndex, Continuous), // 初始化第一个split,DummyLowSplit,取值是Double.MinValue splits(featureIndex)(0), Continuous, Double.MinValue) for (splitIndex <- 1 until numSplits) { // 创建所有的bins bins(featureIndex)(splitIndex) = new Bin(splits(featureIndex)(splitIndex - 1), splits(featureIndex)(splitIndex), Continuous, Double.MinValue) } bins(featureIndex)(numSplits) = new Bin(splits(featureIndex)(numSplits - 1), // 初始化最后一个split,DummyHighSplit,取值是Double.MaxValue new DummyHighSplit(featureIndex, Continuous), Continuous, Double.MinValue) } else { // 对于分类的feature // Categorical feature val featureArity = metadata.featureArity(featureIndex) // 离散特征中的取值个数 if (metadata.isUnordered(featureIndex)) { // 无序的离散特征 // TODO: The second half of the bins are unused. Actually, we could just use // splits and not build bins for unordered features. That should be part of // a later PR since it will require changing other code (using splits instead // of bins in a few places). // Unordered features // 2^(maxFeatureValue - 1) - 1 combinations splits(featureIndex) = new Array[Split](numSplits) bins(featureIndex) = new Array[Bin](numBins) var splitIndex = 0 while (splitIndex < numSplits) { val categories: List[Double] = extractMultiClassCategories(splitIndex + 1, featureArity) splits(featureIndex)(splitIndex) = new Split(featureIndex, Double.MinValue, Categorical, categories) bins(featureIndex)(splitIndex) = { if (splitIndex == 0) { new Bin( new DummyCategoricalSplit(featureIndex, Categorical), splits(featureIndex)(0), Categorical, Double.MinValue) } else { new Bin( splits(featureIndex)(splitIndex - 1), splits(featureIndex)(splitIndex), Categorical, Double.MinValue) } } splitIndex += 1 } } else { // 有序的离散特征,不需要事先算,因为splits就等于featureArity // Ordered features // Bins correspond to feature values, so we do not need to compute splits or bins // beforehand. Splits are constructed as needed during training. splits(featureIndex) = new Array[Split](0) bins(featureIndex) = new Array[Bin](0) } } featureIndex += 1 } (splits, bins) case MinMax => throw new UnsupportedOperationException("minmax not supported yet.") case ApproxHist => throw new UnsupportedOperationException("approximate histogram not supported yet.") } }
3. TreePoint和BaggedPoint
TreePoint是LabeledPoint的内部数据结构,这里需要做转换,
private def labeledPointToTreePoint( labeledPoint: LabeledPoint, bins: Array[Array[Bin]], featureArity: Array[Int], isUnordered: Array[Boolean]): TreePoint = { val numFeatures = labeledPoint.features.size val arr = new Array[Int](numFeatures) var featureIndex = 0 while (featureIndex < numFeatures) { arr(featureIndex) = findBin(featureIndex, labeledPoint, featureArity(featureIndex), isUnordered(featureIndex), bins) featureIndex += 1 } new TreePoint(labeledPoint.label, arr) //只是将labeledPoint中的value替换成arr }
arr是findBin的结果,
这里主要是针对连续特征做处理,将连续的值通过二分查找转换为相应bin的index
对于离散数据,bin等同于featureValue.toInt
BaggedPoint,由于random forest是比较典型的bagging算法,所以需要对训练集做bootstrap sample
而对于decision tree是特殊的单根random forest,所以不需要做抽样
BaggedPoint.convertToBaggedRDDWithoutSampling(treeInput)
其实只是做简单的封装
4. DecisionTree.findBestSplits
这段代码写的有点复杂,尤其和randomForest混杂一起
总之,关键在
// find best split for each node val (split: Split, stats: InformationGainStats, predict: Predict) = binsToBestSplit(aggStats, splits, featuresForNode, nodes(nodeIndex)) (nodeIndex, (split, stats, predict)) }.collectAsMap()
看看binsToBestSplit的实现,为了清晰一点,我们只看continuous feature
四个参数,
binAggregates: DTStatsAggregator, 就是ImpurityAggregator,给出如果算出impurity的逻辑
splits: Array[Array[Split]], feature对应的splits
featuresForNode: Option[Array[Int]], tree node对应的feature
node: Node, 哪个tree node
返回值,
(Split, InformationGainStats, Predict),
Split,最优的split对象(包含featureindex和splitindex)
InformationGainStats,该split产生的Gain对象,表明产生多少增益,多大程度降低impurity
Predict,该节点的预测值,对于连续feature就是平均值,看后面的分析
private def binsToBestSplit( binAggregates: DTStatsAggregator, splits: Array[Array[Split]], featuresForNode: Option[Array[Int]], node: Node): (Split, InformationGainStats, Predict) = { // For each (feature, split), calculate the gain, and select the best (feature, split). val (bestSplit, bestSplitStats) = Range(0, binAggregates.metadata.numFeaturesPerNode).map { featureIndexIdx => //遍历每个feature //......取出feature对应的splits // Find best split. val (bestFeatureSplitIndex, bestFeatureGainStats) = Range(0, numSplits).map { case splitIdx => //遍历每个splits val leftChildStats = binAggregates.getImpurityCalculator(nodeFeatureOffset, splitIdx) val rightChildStats = binAggregates.getImpurityCalculator(nodeFeatureOffset, numSplits) rightChildStats.subtract(leftChildStats) predictWithImpurity = Some(predictWithImpurity.getOrElse( calculatePredictImpurity(leftChildStats, rightChildStats))) val gainStats = calculateGainForSplit(leftChildStats, //算出gain,InformationGainStats对象 rightChildStats, binAggregates.metadata, predictWithImpurity.get._2) (splitIdx, gainStats) }.maxBy(_._2.gain) //找到gain最大的split的index (splits(featureIndex)(bestFeatureSplitIndex), bestFeatureGainStats) } //......省略离散特征的case }.maxBy(_._2.gain) //找到gain最大的feature的split (bestSplit, bestSplitStats, predictWithImpurity.get._1) }
Predict,这个需要分析一下
predictWithImpurity.get._1,predictWithImpurity元组的第一个元素
calculatePredictImpurity的返回值中的predict
private def calculatePredictImpurity( leftImpurityCalculator: ImpurityCalculator, rightImpurityCalculator: ImpurityCalculator): (Predict, Double) = { val parentNodeAgg = leftImpurityCalculator.copy parentNodeAgg.add(rightImpurityCalculator) val predict = calculatePredict(parentNodeAgg) val impurity = parentNodeAgg.calculate() (predict, impurity) }
private def calculatePredict(impurityCalculator: ImpurityCalculator): Predict = { val predict = impurityCalculator.predict val prob = impurityCalculator.prob(predict) new Predict(predict, prob) }
这里predict和impurity有什么不同,可以看出
impurity = ImpurityCalculator.calculate()
predict = ImpurityCalculator.predict
对于连续feature,我们就看Variance的实现,
/** * Calculate the impurity from the stored sufficient statistics. */ def calculate(): Double = Variance.calculate(stats(0), stats(1), stats(2))
@DeveloperApi override def calculate(count: Double, sum: Double, sumSquares: Double): Double = { if (count == 0) { return 0 } val squaredLoss = sumSquares - (sum * sum) / count squaredLoss / count }
从calculate的实现可以看到,impurity求的就是方差, 不是标准差(均方差)
/** * Prediction which should be made based on the sufficient statistics. */ def predict: Double = if (count == 0) { 0 } else { stats(1) / count }
2014-12-08