6278. 数列分块入门 2

Jennie

分块,对于每一个块,排个序

就可以了

#include<cstdio>
#include<iostream>
#include<cstring>
#include<iomanip>
#include<cmath>
#include<stack>
#include<algorithm>
#define int long long
using namespace std;
template<class T>inline void read(T &x)
{
    x=0;register char c=getchar();register bool f=0;
    while(!isdigit(c))f^=c=='-',c=getchar();
    while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
    if(f)x=-x;
}
template<class T>inline void print(T x)
{
    if(x<0)putchar('-'),x=-x;
    if(x>9)print(x/10);
    putchar('0'+x%10);
}
int n;
int a[5000001];
int tem[5000001];
int l[5000001];
int r[5000001];
int be[500001];
int cop[5000001];
int len;
int num;
int f;
int x,y,z;
int tag[5000001];
void reini(int x){
	for(int i=l[x];i<=r[x];++i){
		cop[i]=a[i]+tag[x];
		a[i]+=tag[x];
	}
	tag[x]=0;
	sort(cop+l[x],cop+r[x]+1);
}
void add(int ll,int rr,int k){
	if(be[ll]==be[rr]){
		for(int i=ll;i<=rr;++i){
			a[i]+=k;
		}
		reini(be[ll]);
	}else{
		for(int i=ll;i<=r[be[ll]];++i){
			a[i]+=k;
		}
		reini(be[ll]);
		for(int i=be[ll]+1;i<be[rr];++i){
			tag[i]+=k;
		}
		for(int i=l[be[rr]];i<=rr;++i){
			a[i]+=k;
		}
		reini(be[rr]);
	}
}
int que(int ll,int rr,int k){
	int ans=0;
	if(be[ll]==be[rr]){
		for(int i=ll;i<=rr;++i){
			if(a[i]+tag[be[ll]]<k)
			ans++;
		}
		return ans;
	}else{
		for(int i=ll;i<=r[be[ll]];++i){
			if(a[i]+tag[be[ll]]<k)
			ans++;
		}
		for(int i=l[be[rr]];i<=rr;++i){
			if(a[i]+tag[be[rr]]<k)
			ans++;
		}
		for(int i=be[ll]+1;i<be[rr];++i){
			ans+=lower_bound(cop+l[i],cop+r[i]+1,k-tag[i])-cop-l[i];
		}
		return ans;
	}
	return ans;
}
signed main(){
	read(n);
	for(int i=1;i<=n;++i){
		read(a[i]);
	}
	int len=sqrt(n);
	num=n/len;
	if(n%len) num++;
	for(int i=1;i<=n;++i){
		be[i]=(i-1)/len+1;
	}
	for(int i=1;i<=num;++i){
		l[i]=(i-1)*len+1;
		r[i]=(i)*len;
	}
	r[num]=n;
	for(int i=1;i<=num;++i){
		reini(i);
	}
	for(int i=1;i<=n;++i){
		read(f);
		if(f==0){
			read(x);read(y);read(z);
			add(x,y,z);
		}else{
			read(x);read(y);read(z);
			printf("%lld\n",que(x,y,z*z));
		}
	}
	return 0;
}
上一篇:CF1442E Black, White and Grey Tree 题解


下一篇:[JOISC2014] 挂饰