数据结构与算法之冒泡排序(含改进版)

常用数据结构与算法实现

以下博客根据B站罗召勇老师视频:数据结构与算法基础-Java版(罗召勇)写的详细笔记


数据结构与算法基础:


数据结构与算法之基础概述


数据结构:


(一)数据结构与算法之数组

(二)数组结构与算法之栈

(三)数据结构与算法之队列

(四)数据结构与算法之链表

(五)数据结构与算法之树结构基础

(六)数据结构与算法之二叉树大全

(七)数据结构与算法之Huffman tree(赫夫曼树 / 霍夫曼树 / 哈夫曼树 / 最优二叉树)

(八)数据结构与算法之多路查找树(2-3树、2-3-4树、B树、B+树)

(九)数据结构与算法之图结构


十大经典算法:


(一)数据结构与算法之冒泡排序(含改进版)

(二)数据结构与算法之选择排序(含改进版)

(三)数据结构与算法之插入排序(含改进版)

(四)数据结构与算法之希尔排序

(五)数据结构与算法之归并排序

(六)数据结构与算法之快速排序

(七)数据结构与算法之堆排序

(八)数据结构与算法之计数排序

(九)数据结构与算法之桶排序

(十)数据结构与算法之基数排序


冒泡排序概念

冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。


运行流程:


比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

动图实现:

数据结构与算法之冒泡排序(含改进版)


代码实现

import java.util.Arrays;

public class BubbleSort {
    public static void main(String[] args) {
        int[] arr = {4, 5, 6, 3, 2, 1};
        bubbleSort(arr);
//        [4, 5, 3, 2, 1, 6]
//        [4, 3, 2, 1, 5, 6]
//        [3, 2, 1, 4, 5, 6]
//        [2, 1, 3, 4, 5, 6]
//        [1, 2, 3, 4, 5, 6]
    }

    //冒泡排序,共需要比较length-1轮
    public static void bubbleSort(int[] arr) {
        //控制一共比较多少轮
        for (int i = 0; i < arr.length - 1; i++) {
            //控制比较次数
            for (int j = 0; j < arr.length - 1 - i; j++) {
                if (arr[j] > arr[j + 1]) {
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
            //打印每次排序后的结果
            System.out.println(Arrays.toString(arr)); 
        }
    }
}

时间复杂度

最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)

最坏时间复杂度:O(n^2)

稳定性:稳定

排序分析:待排数组中一共有6个数,第一轮排序时进行了5次比较,第二轮排序时进行了4比较,依次类推,最后一轮进行了1次比较。


数组元素总数为N时,则一共需要的比较次数为:(N-1)+ (N-2)+ (N-3)+ ...1=N*(N-1)/2


算法约做了N^2/2次比较。因为只有在前面的元素比后面的元素大时才交换数据,所以交换的次数少于比较的次数。如果数据是随机的,大概有一半数据需要交换,则交换的次数为N^2/4(不过在最坏情况下,即初始数据逆序时,每次比较都需要交换)。


交换和比较的操作次数都与 N^2 成正比,由于在大O表示法中,常数忽略不计,冒泡排序的时间复杂度为O(N^2)。


O(N2)的时间复杂度是一个比较糟糕的结果,尤其在数据量很大的情况下。所以冒泡排序通常不会用于实际应用。


代码改进

传统的冒泡算法每次排序只确定了最大值,我们可以在每次循环之中进行正反两次冒泡,分别找到最大值和最小值,如此可使排序的轮数减少一半


import java.util.Arrays;

public class BubbleSort {
    public static void main(String[] args) {
        int[] arr = {4, 5, 6, 3, 2, 1};
        bubbleSort(arr);
//        [1, 4, 5, 3, 2, 6]
//        [1, 2, 4, 3, 5, 6]
//        [1, 2, 3, 4, 5, 6]
    }

    //冒泡排序改进
    public static void bubbleSort(int[] arr) {
        int left = 0;
        int right = arr.length - 1;
        while (left < right) {
            //正向冒泡,确定最大值
            for (int i = left; i < right; ++i) {
                //如果前一位大于后一位,交换位置
                if (arr[i] > arr[i + 1]) {
                    int temp = arr[i];
                    arr[i] = arr[i + 1];
                    arr[i + 1] = temp;
                }
            }
            --right;

            //反向冒泡,确定最小值
            for (int j = right; j > left; --j) {
                //如果前一位大于后一位,交换位置
                if (arr[j] < arr[j - 1]) {
                    int temp = arr[j];
                    arr[j] = arr[j - 1];
                    arr[j - 1] = temp;
                }
            }
            ++left;
            
            System.out.println(Arrays.toString(arr));
        }
    }
}


上一篇:【案例分享】项目施工进度报告 - 树形报表


下一篇:Python 最强编辑器详细使用指南!(六)