采用 galois 的python库(https://github.com/mhostetter/galois ),快速写了一个在扩GF(2^m)上的 [t,n] 门限的Shamir-secret-sharing 流程;
document写的也很详细使用起来非常趁手。缺点就是效率略低一些。
https://pypi.org/project/galois/#polynomial-construction
代码如下:
import numpy as np
import galois
# Apply GF calculation implement Shamir Secret Share
# system parameter
# field param
n = 10
t = 6
F_num = 2**8
GF256 = galois.GF(F_num)
def distribute_shares(s):
# Construct the polynomial and distribute the shares
#
print('The secret is :',s)
powers =[i for i in range(t-1,-1,-1)]
coeffs = [np.random.randint(F_num) for _ in range(t-1)]
# append the secret as intercept;
coeffs.append(s)
p = galois.Poly.Degrees(powers, coeffs, field=GF256)
print('construct the polynomials:',p)
# randomly generate n points
secret_shares =[]
xp = np.random.choice(range(F_num),n,replace=False)
secret_shares = [str(xi)+'-'+str(int(p(xi).base)) for xi in xp]
return secret_shares
def reconstruct_secret(collected_shares):
# reconstruct the secret with collected shares
if len(collected_shares) != t:
return np.nan
x = []
y = []
for item in collected_shares:
xi = int(item.split('-')[0])
yi = int(item.split('-')[1])
x.append(xi)
y.append(yi)
ss_0 = GF256(0)
for i in range(t):
item = GF256(y[i])
for j in range(t):
if i!=j:
item *= -1*GF256(x[j])/(GF256(x[i])-GF256(x[j]))
ss_0 += item
return int(ss_0.base)
# generate secret shares
secret_shares = distribute_shares(33)
# collect random share
collected_shares = np.random.choice(secret_shares,t,replace=False)
print('Randomly selected t shares \'x-y\':')
print(collected_shares)
recon_secret = reconstruct_secret(collected_shares)
print('Reconstructed secret:',recon_secret)