ggplot2已经成为了R语言中数据可视化的同义词, 这是一个强大的工具, 可以帮助我们制作优良的图表, 创造出令人吃惊的图片, 下面我们一起学习(本博文参考了知乎问题如何使用 ggplot2中黄宝臣的回答(), 并在此基础上补充了一些细节和自己的理解).
ggplot2函数里面为属性赋值的时候需要使用的参数名:
- 图形属性(aes): 表示几何对象的属性: 横坐标, 点的大小, 颜色, 填充色等; 比如一个点的属性有它的横纵坐标, 它的大小, 颜色等等.
- 不同的几何对象(geom_, geometry的简称): 主要用来指定数据显示的形式: 点, 线, 或者条形; 如: geom_point(color='darkred')表示数据要用点进行显示, 颜色为黑红色.
- 统计变换(stat_, statistics的简称): 比如求一些基本的数据属性, 如均值, 方差等, 算出来以后进行展示.
入门实例1: 基本图形的绘制
x <- rnorm(100,14,5)
y <- x + rnorm(100,0,1) ggplot(data = NULL, mapping = aes(x = x, y = y)) + # data=NULL
geom_point(color = 'darkred') +
annotate('text',x=13,y=20,parse = T,
label = 'x[1]==x[2]')
ggplot(data = NULL, mapping = aes(x=x, y=y)) 生成的结果(默认数据集为NULL, 创建的图形对象在加上图层之前无法显示, 因此什么都看不到):
语法: ggplot(data = NULL, mapping = aes(), ... , environment = parent.frame()) 该函数主要有两个参数: 数据(指定绘图所用的默认数据集, 必须是数据框)和图形属性映射(在aes()里面). 这两个参数将被设为绘图的默认参数. 只有在新加的图层里面设定了新的参数, 默认值才会被修改. (注意, 即使函数里面的输入参数你不写清楚参数名, 也可以通过相对位置来确定, 但是为了可读性以及避免由于相对位置记错而引发错误, 建议还是都写上参数名)
再看看ggplot(data = NULL, mapping = aes(x=x, y=y)) + geo_point(color = 'darkred')生成的图像(+号用来添加图层, 该数据集使用了ggplot里面的默认数据集和图形属性映射, 而且使用了另外两个可选参数的默认值: 统计变换(stat="identity")/位置调整(position="identity")): 这里图层被添加到了ggplot()创建的图形对象上了.
语法: geom_point(mapping=NULL, data=NULL, stat="identity",position="identity", ..., na.rm=FALSE, show.legend=NA, inherit.aes=TRUE)
这里参数mapping在前, data在后, 和ggplot正好相反, 这是因为我们再图形对象中一般先设定数据集, 而在图层函数中大多是设定图形属性而不是数据集.
最后是整个上面的语句生成的图形:
summary函数:
summary函数可以帮助我们查看图形对象的结构, 考虑R里面的diamonds数据集(53940 x 10):
> p <- ggplot(data = diamonds, mapping = aes(x = carat, y = price, colour = cut))
> summary(p)
data: carat, cut, color, clarity, depth, table, price, x, y, z [53940x10] # 首先给出图形对象的默认设置
mapping: x = carat, y = price, colour = cut # 图形对象的默认设置
faceting: facet_null()
几何对象描述了应该用何种对象来对数据进行展示, 有些对象关联了相应的统计变换.
- geom_point(): 用来绘制散点图;
- geom_smooth(): 用来拟合一条平滑的曲线, 并将曲线和标准差展示在图中;
- geom_boxplot(): 可以用来绘制箱线胡须图.
- geom_line(), geom_path(): 都是绘制连线, 将数据点连接起来, line图只能从做到右绘制, path图则可以是任意方向;
- geom_polygon(): 画点围成的多边形
- ......
library("ggplot2")
x <- rnorm(100,14,5)
y <- x + rnorm(100,0,1) ggplot(data = NULL, aes(x = x, y = y)) +
geom_point() + geom_smooth()
ggplot(data = NULL, aes(x = x, y = y)) +
geom_point() + geom_line()
ggplot(data = NULL, aes(x = x, y = y)) +
geom_point() + geom_path()
入门实例2: 基本图形的绘制
library("ggplot2")
x <- c(rnorm(50,14,5), rep(20,20)) # 生成50个均值为14,标准差为5的随机数+20个值为20的数
y <- c(rnorm(50,14,5) + rnorm(50,0,1), rep(20,20))
# 绘图语句
ggplot(data = NULL, aes(x = x, y = y)) + # Begin draw
geom_point(color = 'darkred')
绘图语句里面用到了geom_point, 但是没有用到stat_(统计绘图)方面的函数, 看官方文档里面geom_point的用法可以发现, 它提供了一个"stat"的选项, 默认为: stat = "identity",这个表示不对数据进行任何统计变换, 但是如果我将这个参数设置为其他的呢? 即我们要对数据进行统计变换, 那么统计变换的效果又是什么样的呢? 我们先看看x,y变量里面都存放了什么东西!
> x # x,y这两个变量里面的前50个数都是随机数, 但是后面20个数都是20, 也就是说, (x,y)有20个(20,20)重复的坐标
[1] 15.185802 13.288382 14.049740 11.887190 10.271295 11.798415 9.114219 19.091152
[9] 14.288480 19.660104 9.365842 24.286993 14.529903 21.785067 4.267601 12.585770
[17] 2.515565 10.978805 6.707766 17.032989 15.148695 7.662401 15.532458 9.102369
[25] 16.692523 16.959872 11.790089 8.236425 13.349470 16.593251 15.169231 13.024083
[33] 16.171105 10.150380 22.579654 15.101349 1.145253 8.670352 24.728247 18.523736
[41] 12.200371 4.155781 8.475500 10.048165 15.373836 26.380227 25.330350 7.801644
[49] 23.343966 14.910023 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000
[57] 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000
[65] 20.000000 20.000000 20.000000 20.000000 20.000000 20.000000
坐标既然有重复, 那么绘图的时候就只显示一个点呗, 实际上, 默认上是这样显示的, 但是, 如果我们进行了统计变换, 得到的图将会是这样的: 我们竟然看到绘制的图坐标(20,20)的地方竟然是个圆球, 这个圆球代表了此坐标点出现的次数.
ggplot(data = NULL, aes(x = x, y = y)) + # Begin draw
geom_point(color = 'darkred', stat = "sum") # stat = "sum"
这说明了一个什么问题? 这说明了geom_point这样的函数里面也是带有stat_(统计)功能的. 因此geom_和stat_其实是一回事. 但是其实stat_里面提供了一个stat_sum这个函数, 既然geom_point里面带有了stat, 那么stat_sum这个函数还有用吗? 请看下面的代码, 这个代码生成的图和上图是一模一样的.
ggplot(data = NULL, aes(x = x, y = y)) + # Begin draw
stat_sum(color = "darkred", geom = "point")
从上面我们可以归纳出ggplot2的特点2: 不要认为geom_和stat_是两种绘图方法, 他们其实是相互融合的好基友.
参考:
[1] http://docs.ggplot2.org/current/ (官方ggplot2 2.1.0 Help topics)