总结了一下常见集中排序的算法
归并排序
归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。
具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了。然后将这些有序的子元素进行合并。
合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列中最小的元素进行比较,选取两个元素中最小的那个子序列并将其从子序列中
去掉添加到最终的结果集中,直到两个子序列归并完成。
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
#!/usr/bin/python import sys
def merge(nums, first, middle, last):
''''' merge ''' # 切片边界,左闭右开并且是了0为开始
lnums = nums[first:middle + 1 ]
rnums = nums[middle + 1 :last + 1 ]
lnums.append(sys.maxint)
rnums.append(sys.maxint)
l = 0 r = 0 for i in range (first, last + 1 ):
if lnums[l] < rnums[r]:
nums[i] = lnums[l]
l + = 1 else :
nums[i] = rnums[r]
r + = 1 def merge_sort(nums, first, last):
''''' merge sort
merge_sort函数中传递的是下标,不是元素个数
''' if first < last:
middle = (first + last) / 2 merge_sort(nums, first, middle)
merge_sort(nums, middle + 1 , last)
merge(nums, first, middle,last)
if __name__ = = '__main__' :
nums = [ 10 , 8 , 4 , - 1 , 2 , 6 , 7 , 3 ]
print 'nums is:' , nums
merge_sort(nums, 0 , 7 )
print 'merge sort:' , nums
|
稳定,时间复杂度 O(nlog n)
插入排序
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#!/usr/bin/python import sys
def insert_sort(a):
''''' 插入排序
有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,
但要求插入后此数据序列仍然有序。刚开始 一个元素显然有序,然后插入一
个元素到适当位置,然后再插入第三个元素,依次类推
''' a_len = len (a)
if a_len = 0 and a[j] > key:
a[j + 1 ] = a[j]
j - = 1 a[j + 1 ] = key
return a
if __name__ = = '__main__' :
nums = [ 10 , 8 , 4 , - 1 , 2 , 6 , 7 , 3 ]
print 'nums is:' , nums
insert_sort(nums)
print 'insert sort:' , nums
|
稳定,时间复杂度 O(n^2)
交换两个元素的值python中你可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组
(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。
选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到
排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所
有元素均排序完毕。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
import sys
def select_sort(a):
''''' 选择排序
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,
顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序是不稳定的排序方法。
''' a_len = len (a)
for i in range (a_len): #在0-n-1上依次选择相应大小的元素
min_index = i #记录最小元素的下标
for j in range (i + 1 , a_len): #查找最小值
if (a[j]<a[min_index]):
min_index = j
if min_index ! = i: #找到最小元素进行交换
a[i],a[min_index] = a[min_index],a[i]
if __name__ = = '__main__' :
A = [ 10 , - 3 , 5 , 7 , 1 , 3 , 7 ]
print 'Before sort:' ,A
select_sort(A)
print 'After sort:' ,A
|
不稳定,时间复杂度 O(n^2)
希尔排序
希尔排序,也称递减增量排序算法,希尔排序是非稳定排序算法。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。
先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行排序;
然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
import sys
def shell_sort(a):
''''' shell排序
''' a_len = len (a)
gap = a_len / 2 #增量
while gap> 0 :
for i in range (a_len): #对同一个组进行选择排序
m = i
j = i + 1 while j<a_len:
if a[j]<a[m]:
m = j
j + = gap #j增加gap
if m! = i:
a[m],a[i] = a[i],a[m]
gap / = 2 if __name__ = = '__main__' :
A = [ 10 , - 3 , 5 , 7 , 1 , 3 , 7 ]
print 'Before sort:' ,A
shell_sort(A)
print 'After sort:' ,A
|
不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^s)1<s<2
堆排序 ( Heap Sort )
"堆”的定义:在起始索引为 0 的“堆”中:
节点 i 的右子节点在位置 2 * i + 24) 节点 i 的父节点在位置 floor( (i - 1) / 2 ) : 注 floor 表示“取整”操作
堆的特性:
每个节点的键值一定总是大于(或小于)它的父节点
“最大堆”:
“堆”的根节点保存的是键值最大的节点。即“堆”中每个节点的键值都总是大于它的子节点。
上移,下移 :
当某节点的键值大于它的父节点时,这时我们就要进行“上移”操作,即我们把该节点移动到它的父节点的位置,
而让它的父节点到它的位置上,然后我们继续判断该节点,直到该节点不再大于它的父节点为止才停止“上移”。
现在我们再来了解一下“下移”操作。当我们把某节点的键值改小了之后,我们就要对其进行“下移”操作。
方法:
我们首先建立一个最大堆(时间复杂度O(n)),然后每次我们只需要把根节点与最后一个位置的节点交换,然后把最后一个位置排除之外,然后把交换后根节点的堆进行调整(时间复杂度 O(lgn) ),即对根节点进行“下移”操作即可。 堆排序的总的时间复杂度为O(nlgn).
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
#!/usr/bin env python # 数组编号从 0开始 def left(i):
return 2 * i + 1 def right(i):
return 2 * i + 2 #保持最大堆性质 使以i为根的子树成为最大堆 def max_heapify(A, i, heap_size):
if heap_size < = 0 :
return l = left(i)
r = right(i)
largest = i # 选出子节点中较大的节点
if l A[largest]:
largest = l
if r A[largest]:
largest = r
if i ! = largest : #说明当前节点不是最大的,下移
A[i], A[largest] = A[largest], A[i] #交换
max_heapify(A, largest, heap_size) #继续追踪下移的点
#print A
# 建堆 def bulid_max_heap(A):
heap_size = len (A)
if heap_size > 1 :
node = heap_size / 2 - 1 while node > = 0 :
max_heapify(A, node, heap_size)
node - = 1 # 堆排序 下标从0开始 def heap_sort(A):
bulid_max_heap(A)
heap_size = len (A)
i = heap_size - 1 while i > 0 :
A[ 0 ],A[i] = A[i], A[ 0 ] # 堆中的最大值存入数组适当的位置,并且进行交换
heap_size - = 1 # heap 大小 递减 1
i - = 1 # 存放堆中最大值的下标递减 1
max_heapify(A, 0 , heap_size)
if __name__ = = '__main__' :
A = [ 10 , - 3 , 5 , 7 , 1 , 3 , 7 ]
print 'Before sort:' ,A
heap_sort(A)
print 'After sort:' ,A
|
不稳定,时间复杂度 O(nlog n)
快速排序
快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p...r]快速排序的分治过程的三个步骤为:
分解:把数组A[p...r]分为A[p...q-1]与A[q+1...r]两部分,其中A[p...q-1]中的每个元素都小于等于A[q]而A[q+1...r]中的每个元素都大于等于A[q];
解决:通过递归调用快速排序,对子数组A[p...q-1]和A[q+1...r]进行排序;
合并:因为两个子数组是就地排序的,所以不需要额外的操作。
对于划分partition 每一轮迭代的开始,x=A[r], 对于任何数组下标k,有:
1) 如果p≤k≤i,则A[k]≤x。
2) 如果i+1≤k≤j-1,则A[k]>x。
3) 如果k=r,则A[k]=x。
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
#!/usr/bin/env python # 快速排序 ''''' 划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边, 比A[r]大的放在右边
快速排序的分治partition过程有两种方法, 一种是上面所述的两个指针索引一前一后逐步向后扫描的方法, 另一种方法是两个指针从首位向中间扫描的方法。 ''' #p,r 是数组A的下标 def partition1(A, p ,r):
'''''
方法一,两个指针索引一前一后逐步向后扫描的方法
''' x = A[r]
i = p - 1 j = p
while j < r:
if A[j] < x:
i + = 1 A[i], A[j] = A[j], A[i]
j + = 1 A[i + 1 ], A[r] = A[r], A[i + 1 ]
return i + 1 def partition2(A, p, r):
'''''
两个指针从首尾向中间扫描的方法
''' i = p
j = r
x = A[p]
while i = x and i < j:
j - = 1 A[i] = A[j]
while A[i]< = x and i < j:
i + = 1 A[j] = A[i]
A[i] = x
return i
# quick sort def quick_sort(A, p, r):
'''''
快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)
''' if p < r:
q = partition2(A, p, r)
quick_sort(A, p, q - 1 )
quick_sort(A, q + 1 , r)
if __name__ = = '__main__' :
A = [ 5 , - 4 , 6 , 3 , 7 , 11 , 1 , 2 ]
print 'Before sort:' ,A
quick_sort(A, 0 , 7 )
print 'After sort:' ,A
|
不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2)
说下python中的序列:
列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引操作符和切片操作符。索引操作符让我们可以从序列中抓取一个特定项目。切片操作符让我们能够获取序列的一个切片,即一部分序列,如:a = ['aa','bb','cc'], print a[0] 为索引操作,print a[0:2]为切片操作。
http://www.qytang.com/
http://www.qytang.com/cn/list/29/
http://www.qytang.com/cn/list/28/610.htm
http://www.qytang.com/cn/list/28/595.htm
http://www.qytang.com/cn/list/28/583.htm
http://www.qytang.com/cn/list/28/582.htm
http://www.qytang.com/cn/list/28/576.htm
http://www.qytang.com/cn/list/28/523.htm
http://www.qytang.com/cn/list/28/499.htm
http://www.qytang.com/cn/list/28/488.htm
http://www.qytang.com/cn/list/28/466.htm
http://www.qytang.com/cn/list/28/463.htm
http://www.qytang.com/cn/list/28/458.htm
http://www.qytang.com/cn/list/28/455.htm
http://www.qytang.com/cn/list/28/447.htm