# include <stdio.h> # define MAX_VERTEXES //最大顶点数
# define MAXEDGE //边集数组最大值
# define INFINITY //代表不可能的数(无穷大) typedef struct
{//图 结构体定义
int arc[MAX_VERTEXES][MAX_VERTEXES];//二位数组 矩阵
int numVertexes, numEdges;//当前图中的顶点数和边数 }MGraph; typedef struct
{//边集数组 结构体定义
int begin;
int end;
int weight; }Edge; void CreateMGraph (MGraph *G)
{//创建
int i, j;
//下面是已经输入好的
G->numVertexes = ;
G->numEdges = ; for (i=; i<G->numVertexes; i++)
for (j=; j<G->numVertexes; j++)
if (i == j)
G->arc[i][j] = ;
else
G->arc[i][j] = G->arc[j][i] = INFINITY; G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=; for (i=; i<G->numVertexes; i++)
for (j=i+; j<G->numVertexes; j++)//矩阵的上三角,然后对称矩阵的下三角
G->arc[j][i] = G->arc[i][j];//对称
} void swapn (Edge *edges, int i, int j)
{//交换权值
int temp; //起始
temp = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = temp; //结束
temp = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = temp; //权值
temp = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = temp; return ;
} void sort (Edge edges[], MGraph *G)
{//对权值进行排序
int i, j;
for (i=; i<G->numEdges; i++)
for (j=i+; j<G->numEdges; j++)//对存入有效边(两端点的权值)进行冒泡排序
if (edges[i].weight > edges[j].weight)
swapn (edges, i, j);//交换权值 printf ("排序过后:\n");
for (i=; i<G->numEdges; i++)
printf ("边:(%d,%d) 权值:%d\n", edges[i].begin, edges[i].end, edges[i].weight); return ;
} int Find (int *parent, int f)//★
{// 查找连线顶点的尾部下标
//走过的路都有记录,如果走已经走过的路的话,那么返回的值(n=m);
while (parent[f] > )
f = parent[f];
return f;
} void MiniSpanTree_Kruskal (MGraph G)
{//克鲁斯卡尔算法
int i, j, n, m;
int k = ;
int parent[MAX_VERTEXES];//定义一维数组判断是否形成环路
Edge edges[MAXEDGE];//定义边集数组 for (i=; i<G.numVertexes; i++)//存储有效的边(两个端点和权值)
for (j=i+; j<G.numVertexes; j++)//矩阵上三角进行比较,因为对称,所以比较一半更节约时间
if (G.arc[i][j] < INFINITY)
{
edges[k].begin = i;
edges[k].end = j;
edges[k ++].weight = G.arc[i][j];
}
sort(edges, &G);//排序 for (i=; i<G.numVertexes; i++)
parent[i] = ; printf ("\n打印最小生成树:\n");
for (i=; i<G.numEdges; i++)
{
n = Find (parent, edges[i].begin);//★
m = Find (parent, edges[i].end);//★
if (n != m)
{
parent[n] = m;
printf ("边(%d,%d) 权值:%d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
} int main (void) {
MGraph G;
CreateMGraph (&G);//创建
MiniSpanTree_Kruskal (G);//克鲁斯卡尔 算法 return ;
} /*
在vc++6.0运行结果: 排序过后:
边:(4,7) 权值:7
边:(2,8) 权值:8
边:(0,1) 权值:10
边:(0,5) 权值:11
边:(1,8) 权值:12
边:(3,7) 权值:16
边:(1,6) 权值:16
边:(5,6) 权值:17
边:(1,2) 权值:18
边:(6,7) 权值:19
边:(3,4) 权值:20
边:(3,8) 权值:21
边:(2,3) 权值:22
边:(3,6) 权值:24
边:(4,5) 权值:26 打印最小生成树:
边(4,7) 权值:7
边(2,8) 权值:8
边(0,1) 权值:10
边(0,5) 权值:11
边(1,8) 权值:12
边(3,7) 权值:16
边(1,6) 权值:16
边(6,7) 权值:19
Press any key to continue
*/