题意:在平面上有n个点,求一个圆心在原点的扇型,至少有k个点在里面,要求扇型面积尽量小
思路:首先先枚举半径,然后找到半径小于等于枚举值的点,其中要求点要连续,按正弦值的从小到大排序,因为我们要包括从大到小的连续查找,所以我们开一个两倍的储存数组,然后从我们找到的符合要求的点中,求出最小的扇型面积,注意当大于n的时候需要加一个圆的面积了,还有就是精度的问题,看了别人的才注意过来
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> using namespace std; const int MAXN = 5010; const double eps = 1e-6; const double pi = acos(-1.0); int dcmp(double x){ if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } struct node{ int x,y; double ang; double len; node(int x = 0,int y = 0):x(x),y(y){ ang = atan2(y,x); len = sqrt(x*x+y*y); } bool operator<(const node &t)const { return dcmp(ang-t.ang) < 0; } }p[2*MAXN]; int n,k,a[2*MAXN]; int main(){ int cas = 1; while (scanf("%d%d",&n,&k) != EOF && n+k){ for (int i = 0; i < n; i++){ int x,y; scanf("%d%d",&x,&y); p[i] = node(x,y); } sort(p,p+n); for (int i = n; i < 2*n; i++) p[i] = p[i-n]; double ans = 1e10; for (int i = 0; i < n; i++){ double r = p[i].len; int m = 0; for (int j = 0; j < 2*n; j++) if (dcmp(p[j].len-r) <= 0) a[m++] = j; for (int j = 0; j < m-k+1; j++){ if (a[j+k-1]-a[j] >= n || a[j] >= n) break; double angle = p[a[j+k-1]].ang - p[a[j]].ang; if (a[j+k-1] >= n) angle += 2*pi; ans = min(ans,r*r*angle/2); } } printf("Case #%d: %.2f\n",cas++,ans); } return 0; }