Clone an undirected graph. Each node in the graph contains a label
and
a list of its neighbors
.
OJ‘s undirected graph serialization:
Nodes are labeled uniquely.
We use#
as a separator for each node, and ,
as
a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
- First node is labeled as
0
. Connect node0
to both nodes1
and2
. - Second node is labeled as
1
. Connect node1
to node2
. - Third node is labeled as
2
. Connect node2
to node2
(itself), thus forming a self-cycle.
Visually, the graph looks like the following:
1 / / 0 --- 2 / \_/
这里使用深度优先搜索。这样可以递归实现,如果是宽度优先,就要额外使用queue容器。
关键点:
1 这里的clone需要深度拷贝,就是要使用new操作了
2 防止回路无限循环,就要使用hash表,这里使用unordered_map记录访问过的节点。因为这里的label应该是唯一的才对,所以可以直接使用label作为关键字就可以。
看起来挺难的,因为图总给人困难的感觉,其实不难,3到4星级难度吧,很多都是基本操作组合起来。我一次性通过了。
struct UndirectedGraphNode { int label; vector<UndirectedGraphNode *> neighbors; UndirectedGraphNode(int x) : label(x) {}; }; class Solution { public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { unordered_map<int, UndirectedGraphNode *> track; return cloneGraph(node, track); } UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node, unordered_map<int, UndirectedGraphNode *> &track) { if (!node) return NULL; if (track.count(node->label)) return track[node->label]; UndirectedGraphNode *new_node = new UndirectedGraphNode(node->label); new_node->neighbors.resize(node->neighbors.size()); track[node->label] = new_node; for (int i = 0; i < node->neighbors.size(); i++) { new_node->neighbors[i] = cloneGraph(node->neighbors[i], track); } return new_node; } };