李沐,亚马逊 AI 主任科学家,名声在外!半年前,由李沐、Aston Zhang 等人合力打造的《动手学深度学习》正式上线,免费供大家阅读。这是一本面向中文读者的能运行、可讨论的深度学习教科书!
之前,红色石头就分享过这份资源,再次附上:
在线预览地址:
GitHub 项目地址:
https://github.com/d2l-ai/d2l-zh
课程视频地址:
https://space.bilibili.com/209599371/channel/detail?cid=23541
我们知道,作为 MXNet 的作者之一,李沐的这本《动手学深度学习》也是使用 MXNet 框架写成的。但是很多入坑机器学习的萌新们使用的却是 PyTorch。如果有教材对应的 PyTorch 实现代码就更好了!
撒花!今天就给大家带来这本书的 PyTorch 实现源码。最近,来自印度理工学院的数据科学小组,把《动手学深度学习》从 MXNet “翻译”成了 PyTorch,经过 3 个月的努力,这个项目已经基本完成,并登上了 GitHub 热榜。
首先放上这份资源的 GitHub 地址:
https://github.com/dsgiitr/d2l-pytorch
详细目录如下:
-
Ch02 Installation
-
Installation
-
Installation
-
Ch03 Introduction
-
Introduction
-
Introduction
-
Ch04 The Preliminaries: A Crashcourse
-
4.1 Data Manipulation
-
4.2 Linear Algebra
-
4.3 Automatic Differentiation
-
4.4 Probability and Statistics
-
4.5 Naive Bayes Classification
-
4.6 Documentation
-
4.1 Data Manipulation
-
Ch05 Linear Neural Networks
-
5.1 Linear Regression
-
5.2 Linear Regression Implementation from Scratch
-
5.3 Concise Implementation of Linear Regression
-
5.4 Softmax Regression
-
5.5 Image Classification Data (Fashion-MNIST)
-
5.6 Implementation of Softmax Regression from Scratch
-
5.7 Concise Implementation of Softmax Regression
-
5.1 Linear Regression
-
Ch06 Multilayer Perceptrons
-
6.1 Multilayer Perceptron
-
6.2 Implementation of Multilayer Perceptron from Scratch
-
6.3 Concise Implementation of Multilayer Perceptron
-
6.4 Model Selection Underfitting and Overfitting
-
6.5 Weight Decay
-
6.6 Dropout
-
6.7 Forward Propagation Backward Propagation and Computational Graphs
-
6.8 Numerical Stability and Initialization
-
6.9 Considering the Environment
-
6.10 Predicting House Prices on Kaggle
-
6.1 Multilayer Perceptron
-
Ch07 Deep Learning Computation
-
7.1 Layers and Blocks
-
7.2 Parameter Management
-
7.3 Deferred Initialization
-
7.4 Custom Layers
-
7.5 File I/O
-
7.6 GPUs
-
7.1 Layers and Blocks
-
Ch08 Convolutional Neural Networks
-
8.1 From Dense Layers to Convolutions
-
8.2 Convolutions for Images
-
8.3 Padding and Stride
-
8.4 Multiple Input and Output Channels
-
8.5 Pooling
-
8.6 Convolutional Neural Networks (LeNet)
-
8.1 From Dense Layers to Convolutions
-
Ch09 Modern Convolutional Networks
-
9.1 Deep Convolutional Neural Networks (AlexNet)
-
9.2 Networks Using Blocks (VGG)
-
9.3 Network in Network (NiN)
-
9.4 Networks with Parallel Concatenations (GoogLeNet)
-
9.5 Batch Normalization
-
9.6 Residual Networks (ResNet)
-
9.7 Densely Connected Networks (DenseNet)
-
9.1 Deep Convolutional Neural Networks (AlexNet)
-
Ch10 Recurrent Neural Networks
-
10.1 Sequence Models
-
10.2 Language Models
-
10.3 Recurrent Neural Networks
-
10.4 Text Preprocessing
-
10.5 Implementation of Recurrent Neural Networks from Scratch
-
10.6 Concise Implementation of Recurrent Neural Networks
-
10.7 Backpropagation Through Time
-
10.8 Gated Recurrent Units (GRU)
-
10.9 Long Short Term Memory (LSTM)
-
10.10 Deep Recurrent Neural Networks
-
10.11 Bidirectional Recurrent Neural Networks
-
10.12 Machine Translation and DataSets
-
10.13 Encoder-Decoder Architecture
-
10.14 Sequence to Sequence
-
10.15 Beam Search
-
10.1 Sequence Models
-
Ch11 Attention Mechanism
-
11.1 Attention Mechanism
-
11.2 Sequence to Sequence with Attention Mechanism
-
11.3 Transformer
-
11.1 Attention Mechanism
-
Ch12 Optimization Algorithms
-
12.1 Optimization and Deep Learning
-
12.2 Convexity
-
12.3 Gradient Descent
-
12.4 Stochastic Gradient Descent
-
12.5 Mini-batch Stochastic Gradient Descent
-
12.6 Momentum
-
12.7 Adagrad
-
12.8 RMSProp
-
12.9 Adadelta
-
12.10 Adam
-
12.1 Optimization and Deep Learning
其中,每一小节都是可以运行的 Jupyter 记事本,你可以*修改代码和超参数来获取及时反馈,从而积累深度学习的实战经验。
目前,PyTorch 代码还有 6 个小节没有完成,但整体的完成度已经很高了!开发团队希望更多的爱好者加入进来,贡献一份力量!
最后,再次附上 GitHub 地址: