数据结构----C++实现非递归和递归的深度优先遍历和广度优先遍历

 数据结构----C++实现非递归和递归的深度优先遍历和广度优先遍历

 C++ 非递归深度优先遍历

#include <iostream>
#include <malloc.h>
#include <stack> 
using namespace std;
const int MaxSize=6;//图中最多顶点个数
typedef string DataType;
int visited[MaxSize] = {0};//全局数组变量visited初始化 
class MGraph{
	public:
		MGraph();//构造函数 
		~MGraph(); 
		void DFTraverse(int v);
		void BFTraverse(int v);
	private:
		DataType vertex[MaxSize] = {"v0", "v1", "v2", "v3", "v4", "v5"}; //存储顶点的一维数组 
		int edge[MaxSize][MaxSize] = {{0,34,46,INT_MAX,INT_MAX,19}, 
								{34,0,INT_MAX,INT_MAX,12,INT_MAX},
								{46,INT_MAX,0,17,INT_MAX,25},
								{INT_MAX,INT_MAX,17,0,38,25},
								{INT_MAX,12,INT_MAX,38,0,26},
								{19,INT_MAX,25,25,26,0}};  //邻接矩阵
		int vertexNum=MaxSize,edgeNum=MaxSize;
}; 

MGraph::MGraph(){
	
} 

MGraph::~MGraph(){

} 

void MGraph::DFTraverse(int v){//非递归深度优先遍历 
	stack<int> DF_stack;
	DF_stack.push(v);
	cout<<vertex[DF_stack.top()];
	visited[v]=1;
	for(int j=0;j<vertexNum;j++){
		if( visited[j] == 0 && (edge[v][j]!=INT_MAX && edge[v][j]!=0 )){
			cout<<vertex[j];
			visited[j]=1;
			v = j;
			DF_stack.push(j); 
			j=0;
		}
		if(j == vertexNum-1 ){
			DF_stack.pop();
		}
	}
}
int main(){
	int i;
	MGraph MG{};
	for(i=0;i<MaxSize;i++)
		visited[i]=0;
	cout<<"深度优先遍历序列是:"<<endl;
	MG.DFTraverse(0);
	cout<<endl;
}

实验结果图:

 数据结构----C++实现非递归和递归的深度优先遍历和广度优先遍历

 C++ 递归深度优先遍历 

#include <iostream>
#include <malloc.h>
#include <stack> 
using namespace std;
const int MaxSize=6;//图中最多顶点个数
typedef string DataType;
int visited[MaxSize] = {0};//全局数组变量visited初始化 
class MGraph{
	public:
		MGraph();//构造函数 
		~MGraph(); 
		void DFTraverse(int v);
		void BFTraverse(int v);
	private:
		DataType vertex[MaxSize] = {"v0", "v1", "v2", "v3", "v4", "v5"}; //存储顶点的一维数组 
		int edge[MaxSize][MaxSize] = {{0,34,46,INT_MAX,INT_MAX,19}, 
								{34,0,INT_MAX,INT_MAX,12,INT_MAX},
								{46,INT_MAX,0,17,INT_MAX,25},
								{INT_MAX,INT_MAX,17,0,38,25},
								{INT_MAX,12,INT_MAX,38,0,26},
								{19,INT_MAX,25,25,26,0}};  //邻接矩阵
		int vertexNum=MaxSize,edgeNum=MaxSize;
}; 

MGraph::MGraph(){
	
} 

MGraph::~MGraph(){

} 
 
void MGraph::DFTraverse(int v){//深度优先遍历 
	cout<<vertex[v];
	visited[v]=1;
	for(int j=0;j<vertexNum;j++)
		if(visited[j] == 0 && (edge[v][j]!=INT_MAX && edge[v][j]!=0 ))
			DFTraverse(j);
}

int main(){
	int i;
	MGraph MG{};
	for(i=0;i<MaxSize;i++)
		visited[i]=0;
	cout<<"深度优先遍历序列是:"<<endl;
	MG.DFTraverse(0);
	cout<<endl;
}

实验结果图: 

 数据结构----C++实现非递归和递归的深度优先遍历和广度优先遍历

C++广度优先遍历

#include <iostream>
#include <malloc.h>
#include <stack> 
using namespace std;
const int MaxSize=6;//图中最多顶点个数
typedef string DataType;
int visited[MaxSize] = {0};//全局数组变量visited初始化 
class MGraph{
	public:
		MGraph();//构造函数 
		~MGraph(); 
		void DFTraverse(int v);
		void BFTraverse(int v);
	private:
		DataType vertex[MaxSize] = {"v0", "v1", "v2", "v3", "v4", "v5"}; //存储顶点的一维数组 
		int edge[MaxSize][MaxSize] = {{0,34,46,INT_MAX,INT_MAX,19}, 
								{34,0,INT_MAX,INT_MAX,12,INT_MAX},
								{46,INT_MAX,0,17,INT_MAX,25},
								{INT_MAX,INT_MAX,17,0,38,25},
								{INT_MAX,12,INT_MAX,38,0,26},
								{19,INT_MAX,25,25,26,0}};  //邻接矩阵
		int vertexNum=MaxSize,edgeNum=MaxSize;
}; 

MGraph::MGraph(){
	
} 

MGraph::~MGraph(){

} 
 
void MGraph::BFTraverse(int v){//广度优先遍历 
	int w,j,Q[MaxSize];//采用顺序队列
	int front=-1,rear=-1;//初始化队列
	cout<<vertex[v];
	visited[v]=1;
	Q[++rear]=v;//被访问顶点入队
	while(front!=rear){
		w=Q[++front];//将队头元素出队并送到v中
		for(j=0;j<vertexNum;j++)
			if((edge[w][j]!=INT_MAX && edge[w][j]!=0 ) && visited[j] == 0){
				cout<<vertex[j];
				visited[j] = 1;
				Q[++rear] = j;
			} 
	} 
}

int main(){
	int i;
	MGraph MG{};
	for(i=0;i<MaxSize;i++)
		visited[i]=0;
	cout<<"广度优先遍历序列是:"<<endl;
	MG.BFTraverse(0);
}

实验结果图: 

数据结构----C++实现非递归和递归的深度优先遍历和广度优先遍历

我是热爱学习的呵呵哒~如果你觉得文章很棒,对你有帮助的话,可以点赞+收藏+加关注喔~

如果文章有不正确的地方,欢迎交流指正,我将虚心请教~o(>ω<)o

我会定期更新文章,继续为您提供优质文章

上一篇:如何使用Python从文本表中删除数据?


下一篇:Mysql安装